Loading…
Detonation cell size model based on deep neural network for hydrogen, methane and propane mixtures with air and oxygen
The aim of the present study was to develop model for detonation cell sizes prediction based on a deep artificial neural network of hydrogen, methane and propane mixtures with air and oxygen. The discussion about the currently available algorithms compared existing solutions and resulted in a conclu...
Saved in:
Published in: | Nuclear engineering and technology 2019, 51(2), , pp.424-431 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The aim of the present study was to develop model for detonation cell sizes prediction based on a deep artificial neural network of hydrogen, methane and propane mixtures with air and oxygen. The discussion about the currently available algorithms compared existing solutions and resulted in a conclusion that there is a need for a new model, free from uncertainty of the effective activation energy and the reaction length definitions. The model offers a better and more feasible alternative to the existing ones. Resulting predictions were validated against experimental data obtained during the investigation of detonation parameters, as well as with data collected from the literature. Additionally, separate models for individual mixtures were created and compared with the main model. The comparison showed no drawbacks caused by fitting one model to many mixtures. Moreover, it was demonstrated that the model may be easily extended by including more independent variables. As an example, dependency on pressure was examined. The preparation of experimental data for deep neural network training was described in detail to allow reproducing the results obtained and extending the model to different mixtures and initial conditions. The source code of ready to use models is also provided. Keywords: Detonation, Cell size model, Machine learning, Artificial neural network |
---|---|
ISSN: | 1738-5733 2234-358X |
DOI: | 10.1016/j.net.2018.11.004 |