Loading…
Finite Element Analysis and Test Study on Restraint of High-energy Pipe Whip in Conventional Island
The effects of high-energy pipe whipping after rupturing are very important in an AP1000 nuclear power plant’s conventional island and restraints of pipe whipping should be considered in the design. It is the first time in the country when reinforced concrete shear walls are used as restraint servic...
Saved in:
Published in: | KSCE journal of civil engineering 2019, 23(4), , pp.1651-1661 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The effects of high-energy pipe whipping after rupturing are very important in an AP1000 nuclear power plant’s conventional island and restraints of pipe whipping should be considered in the design. It is the first time in the country when reinforced concrete shear walls are used as restraint services. In this paper, the behaviors of walls and restraint services subjected to pipe whipping are analyzed through static and dynamic methods in the finite element software (ABAQUS), in which all kinds of nonlinearities are considered. In addition, a test study on the restraint of pipe whipping is conducted. The results show that the wall and the restraint service can prevent pipe whipping effectively under the design load, and anchor plates arranged around the wall opening can improve the local concrete compression performance of concrete to reduce the damage of concrete. Meanwhile, the study also provides the valuable reference for wall designing to prevent from pipe whipping. |
---|---|
ISSN: | 1226-7988 1976-3808 |
DOI: | 10.1007/s12205-019-0588-y |