Loading…

Genome-Wide Association Study of Bone Mineral Density in Korean Men

Osteoporosis is a medical condition of global concern, with increasing incidence in both sexes. Bone mineral density (BMD), a highly heritable trait, has been proven a useful diagnostic factor in predicting fracture. Because medical information is lacking about male osteoporotic genetics, we conduct...

Full description

Saved in:
Bibliographic Details
Published in:Genomics & informatics 2016, 14(2), , pp.062-068
Main Authors: Bae, Ye Seul, Im, Sun-Wha, Kang, Mi So, Kim, Jin Hee, Lee, Soon Hang, Cho, Be Long, Park, Jin Ho, Nam, You-Seon, Son, Ho-Young, Yang, San Deok, Sung, Joohon, Oh, Kwang Ho, Yun, Jae Moon, Kim, Jong Il
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Osteoporosis is a medical condition of global concern, with increasing incidence in both sexes. Bone mineral density (BMD), a highly heritable trait, has been proven a useful diagnostic factor in predicting fracture. Because medical information is lacking about male osteoporotic genetics, we conducted a genome-wide association study of BMD in Korean men. With 1,176 participants, we analyzed 4,414,664 single nucleotide polymorphisms (SNPs) after genomic imputation, and identified five SNPs and three loci correlated with bone density and strength. Multivariate linear regression models were applied to adjust for age and body mass index interference. Rs17124500 (p = 6.42 × 10(-7)), rs34594869 (p = 6.53 × 10(-7)) and rs17124504 (p = 6.53 × 10(-7)) in 14q31.3 and rs140155614 (p = 8.64 × 10(-7)) in 15q25.1 were significantly associated with lumbar spine BMD (LS-BMD), while rs111822233 (p = 6.35 × 10(-7)) was linked with the femur total BMD (FT-BMD). Additionally, we analyzed the relationship between BMD and five genes previously identified in Korean men. Rs61382873 (p = 0.0009) in LRP5, rs9567003 (p = 0.0033) in TNFSF11 and rs9935828 (p = 0.0248) in FOXL1 were observed for LS-BMD. Furthermore, rs33997547 (p = 0.0057) in ZBTB and rs1664496 (p = 0.0012) in MEF2C were found to influence FT-BMD and rs61769193 (p = 0.0114) in ZBTB to influence femur neck BMD. We identified five SNPs and three genomic regions, associated with BMD. The significance of our results lies in the discovery of new loci, while also affirming a previously significant locus, as potential osteoporotic factors in the Korean male population.
ISSN:1598-866X
2234-0742
2234-0742
DOI:10.5808/GI.2016.14.2.62