Loading…
Influence of Nano-silica on the Leaching Attack upon Photocatalytic Cement Mortars
Photocatalytic cementitious materials are used in the exterior of the buildings and infrastructure for self-cleaning and air-purifying purposes. These materials are exposed to the aggressive exposure conditions like acid rain, runoff water and are subjected to the deterioration due to the leaching o...
Saved in:
Published in: | International journal of concrete structures and materials 2019, 13(5), 49, pp.591-602 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Photocatalytic cementitious materials are used in the exterior of the buildings and infrastructure for self-cleaning and air-purifying purposes. These materials are exposed to the aggressive exposure conditions like acid rain, runoff water and are subjected to the deterioration due to the leaching of calcium. The knowledge of leaching attack upon photocatalytic cementitious materials after the addition of nano-materials is necessary. In the current study, the influence of nano-silica addition on the leaching attack upon photocatalytic cement mortars was thoroughly investigated. For this purpose, photocatalytic mortars were made by adding 3% TiO
2
and variable amount (0–2%) of nano-silica. Accelerated leaching environment was created by immersing mortars in 6 M ammonium nitrate (NH
4
NO
3
) solution. The progressive development of the leaching depth in mortars was measured. The loss of hardened properties was monitored by evaluating the compressive strength, flexural strength, porosity, and dynamic modulus of elasticity. X-ray diffraction, thermogravimetry, Fourier transform infrared spectroscopy, scanning electron microscopy tests were conducted to know the microstructural deteriorations. Results indicated that the leaching attack induced mechanical and microstructural damages in the mortars, but the addition of nano-silica decreased mechanical and microstructural damages in the photocatalytic mortars and increased the resistance of photocatalytic mortars to leaching attack. |
---|---|
ISSN: | 1976-0485 2234-1315 |
DOI: | 10.1186/s40069-019-0348-x |