Loading…

Cumulative Light Intensity of Automotive Glass: A Comparative Study on Combination of Optical Filter for Accelerated Weathering Test

The aim of this study was to establish a test method with improved reliability and reproducibility for the accelerated weathering test of automotive interior materials. For this purpose, this study measured the spectral power distribution (SPD) of the glass used in actual vehicles in the oceanic cli...

Full description

Saved in:
Bibliographic Details
Published in:International journal of automotive technology 2019, 20(4), 109, pp.755-762
Main Authors: Jo, Eun Hee, Kim, Il Han, Han, In-Soo, Kim, Chang Hwan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The aim of this study was to establish a test method with improved reliability and reproducibility for the accelerated weathering test of automotive interior materials. For this purpose, this study measured the spectral power distribution (SPD) of the glass used in actual vehicles in the oceanic climate region of South Korea (Seosan) and in the desert climate region of North America (California Proving Ground). In addition, the SPD was measured according to the position of automotive interior parts, and cumulative light intensity was calculated using the curve fitting method. Results showed that the measured light intensity varied according to the position of interior parts because of numerous variables such as the type of glass, angle of sunlight, and frames of vehicles. We investigated the cumulative light intensity of the solar glass used in this study and the glass of other manufacturers, and the obtained data were incorporated into a data base (DB). Understanding the optical characteristics of filters is important accelerated weathering tests (Xenon). Therefore, we compared the SPD and cumulative light intensity of each filter combination and actual automotive glass to confirm the suitability of the filters for weathering tests.
ISSN:1229-9138
1976-3832
DOI:10.1007/s12239-019-0071-2