Loading…

Multi-objective Bayesian optimization of super hydrophobic coatings on asphalt concrete surfaces

Conventional snow removal strategies add direct and indirect expenses to the economy through profit lost due to passenger delays costs, pavement durability issues, contaminating the water runoff, and so on. The use of superhydrophobic (super-water-repellent) coating methods is an alternative to conv...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational design and engineering 2019, 6(4), , pp.693-704
Main Authors: Nahvi, Ali, Sadoughi, Mohammad Kazem, Arabzadeh, Ali, Sassani, Alireza, Hu, Chao, Ceylan, Halil, Kim, Sunghwan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c378t-961c9cccb454709786dec604e4e3077aeaa550a4285ff6da18c9f1f6b1a4fedf3
cites cdi_FETCH-LOGICAL-c378t-961c9cccb454709786dec604e4e3077aeaa550a4285ff6da18c9f1f6b1a4fedf3
container_end_page 704
container_issue 4
container_start_page 693
container_title Journal of computational design and engineering
container_volume 6
creator Nahvi, Ali
Sadoughi, Mohammad Kazem
Arabzadeh, Ali
Sassani, Alireza
Hu, Chao
Ceylan, Halil
Kim, Sunghwan
description Conventional snow removal strategies add direct and indirect expenses to the economy through profit lost due to passenger delays costs, pavement durability issues, contaminating the water runoff, and so on. The use of superhydrophobic (super-water-repellent) coating methods is an alternative to conventional snow and ice removal practices for alleviating snow removal operations issues. As an integrated experimental and analytical study, this work focused on optimizing superhydrophobicity and skid resistance of hydrophobic coatings on asphalt concrete surfaces. A layer-by-layer (LBL) method was utilized for spray depositing polytetrafluoroethylene (PTFE) on an asphalt concrete at different spray times and variable dosages of PTFE. Water contact angle and coefficient of friction at the microtexture level were measured to evaluate superhydrophobicity and skid resistance of the coated asphalt concrete. The optimum dosage and spay time that maximized hydrophobicity and skid resistance of flexible pavement while minimizing cost were estimated using a multi-objective Bayesian optimization (BO) method that replaced the more costly experimental procedure of pavement testing with a cheap-to-evaluate surrogate model constructed based on kriging. In this method, the surrogate model is iteratively updated with new experimental data measured at proper input settings. The result of proposed optimization method showed that the super water repellency and coefficient of friction were not uniformly increased for all the specimens by increasing spray time and dosage. In addition, use of the proposed multi-objective BO method resulted in hydrophobicity and skid resistance being maximally augmented by approximately 23% PTFE dosage at a spray time of 5.5 s. Highlights Effects of spray time and dosage on the hydrophobicity and friction of asphalt were investigated. A layer-by-layer method was utilized for spray depositing polytetrafluoroethylene on an asphalt concrete. The optimum dosage and spay time were estimated by using a multi-objective Bayesian optimization method. An acquisition function that can tackle problems involving multiple objective functions was proposed. The optimum hydrophobicity and skid resistance were achieved with 23% PTFE dosage and at a spray time of 5.5 s.
doi_str_mv 10.1016/j.jcde.2018.11.005
format article
fullrecord <record><control><sourceid>nrf_cross</sourceid><recordid>TN_cdi_nrf_kci_oai_kci_go_kr_ARTI_6124974</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_kci_go_kr_ARTI_6124974</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-961c9cccb454709786dec604e4e3077aeaa550a4285ff6da18c9f1f6b1a4fedf3</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRS0EElXpD7DKlkWCJ3ESZ1kqHpWKkFBZG2cybp0-HNkpUvl6UsqC1Z25czSLw9gt8AQ4FPdt0mJDScpBJgAJ5_kFG6WplHHOhbz8N1-zSQgt5xzKNONQjdjn62Hb29jVLWFvvyh60EcKVu8j1_V2Z791b92wmCgcOvLR-th4161dbTFCNxz3qxANgA7dWm_7odujp54G3BuNFG7YldHbQJO_HLOPp8fl7CVevD3PZ9NFjFkp-7gqACtErEUuSl6VsmgICy5IUMbLUpPWec61SGVuTNFokFgZMEUNWhhqTDZmd-e_e2_UBq1y2v7myqmNV9P35VwVkIqqFAObnln0LgRPRnXe7rQ_KuDqpFS16qRUnZQqADUozX4ABBxtQA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multi-objective Bayesian optimization of super hydrophobic coatings on asphalt concrete surfaces</title><source>ScienceDirect</source><source>Oxford Open</source><creator>Nahvi, Ali ; Sadoughi, Mohammad Kazem ; Arabzadeh, Ali ; Sassani, Alireza ; Hu, Chao ; Ceylan, Halil ; Kim, Sunghwan</creator><creatorcontrib>Nahvi, Ali ; Sadoughi, Mohammad Kazem ; Arabzadeh, Ali ; Sassani, Alireza ; Hu, Chao ; Ceylan, Halil ; Kim, Sunghwan</creatorcontrib><description>Conventional snow removal strategies add direct and indirect expenses to the economy through profit lost due to passenger delays costs, pavement durability issues, contaminating the water runoff, and so on. The use of superhydrophobic (super-water-repellent) coating methods is an alternative to conventional snow and ice removal practices for alleviating snow removal operations issues. As an integrated experimental and analytical study, this work focused on optimizing superhydrophobicity and skid resistance of hydrophobic coatings on asphalt concrete surfaces. A layer-by-layer (LBL) method was utilized for spray depositing polytetrafluoroethylene (PTFE) on an asphalt concrete at different spray times and variable dosages of PTFE. Water contact angle and coefficient of friction at the microtexture level were measured to evaluate superhydrophobicity and skid resistance of the coated asphalt concrete. The optimum dosage and spay time that maximized hydrophobicity and skid resistance of flexible pavement while minimizing cost were estimated using a multi-objective Bayesian optimization (BO) method that replaced the more costly experimental procedure of pavement testing with a cheap-to-evaluate surrogate model constructed based on kriging. In this method, the surrogate model is iteratively updated with new experimental data measured at proper input settings. The result of proposed optimization method showed that the super water repellency and coefficient of friction were not uniformly increased for all the specimens by increasing spray time and dosage. In addition, use of the proposed multi-objective BO method resulted in hydrophobicity and skid resistance being maximally augmented by approximately 23% PTFE dosage at a spray time of 5.5 s. Highlights Effects of spray time and dosage on the hydrophobicity and friction of asphalt were investigated. A layer-by-layer method was utilized for spray depositing polytetrafluoroethylene on an asphalt concrete. The optimum dosage and spay time were estimated by using a multi-objective Bayesian optimization method. An acquisition function that can tackle problems involving multiple objective functions was proposed. The optimum hydrophobicity and skid resistance were achieved with 23% PTFE dosage and at a spray time of 5.5 s.</description><identifier>ISSN: 2288-5048</identifier><identifier>ISSN: 2288-4300</identifier><identifier>EISSN: 2288-5048</identifier><identifier>DOI: 10.1016/j.jcde.2018.11.005</identifier><language>eng</language><publisher>한국CDE학회</publisher><subject>기계공학</subject><ispartof>Journal of Computational Design and Engineering , 2019, 6(4), , pp.693-704</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-961c9cccb454709786dec604e4e3077aeaa550a4285ff6da18c9f1f6b1a4fedf3</citedby><cites>FETCH-LOGICAL-c378t-961c9cccb454709786dec604e4e3077aeaa550a4285ff6da18c9f1f6b1a4fedf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002514498$$DAccess content in National Research Foundation of Korea (NRF)$$Hfree_for_read</backlink></links><search><creatorcontrib>Nahvi, Ali</creatorcontrib><creatorcontrib>Sadoughi, Mohammad Kazem</creatorcontrib><creatorcontrib>Arabzadeh, Ali</creatorcontrib><creatorcontrib>Sassani, Alireza</creatorcontrib><creatorcontrib>Hu, Chao</creatorcontrib><creatorcontrib>Ceylan, Halil</creatorcontrib><creatorcontrib>Kim, Sunghwan</creatorcontrib><title>Multi-objective Bayesian optimization of super hydrophobic coatings on asphalt concrete surfaces</title><title>Journal of computational design and engineering</title><description>Conventional snow removal strategies add direct and indirect expenses to the economy through profit lost due to passenger delays costs, pavement durability issues, contaminating the water runoff, and so on. The use of superhydrophobic (super-water-repellent) coating methods is an alternative to conventional snow and ice removal practices for alleviating snow removal operations issues. As an integrated experimental and analytical study, this work focused on optimizing superhydrophobicity and skid resistance of hydrophobic coatings on asphalt concrete surfaces. A layer-by-layer (LBL) method was utilized for spray depositing polytetrafluoroethylene (PTFE) on an asphalt concrete at different spray times and variable dosages of PTFE. Water contact angle and coefficient of friction at the microtexture level were measured to evaluate superhydrophobicity and skid resistance of the coated asphalt concrete. The optimum dosage and spay time that maximized hydrophobicity and skid resistance of flexible pavement while minimizing cost were estimated using a multi-objective Bayesian optimization (BO) method that replaced the more costly experimental procedure of pavement testing with a cheap-to-evaluate surrogate model constructed based on kriging. In this method, the surrogate model is iteratively updated with new experimental data measured at proper input settings. The result of proposed optimization method showed that the super water repellency and coefficient of friction were not uniformly increased for all the specimens by increasing spray time and dosage. In addition, use of the proposed multi-objective BO method resulted in hydrophobicity and skid resistance being maximally augmented by approximately 23% PTFE dosage at a spray time of 5.5 s. Highlights Effects of spray time and dosage on the hydrophobicity and friction of asphalt were investigated. A layer-by-layer method was utilized for spray depositing polytetrafluoroethylene on an asphalt concrete. The optimum dosage and spay time were estimated by using a multi-objective Bayesian optimization method. An acquisition function that can tackle problems involving multiple objective functions was proposed. The optimum hydrophobicity and skid resistance were achieved with 23% PTFE dosage and at a spray time of 5.5 s.</description><subject>기계공학</subject><issn>2288-5048</issn><issn>2288-4300</issn><issn>2288-5048</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpNkMtOwzAQRS0EElXpD7DKlkWCJ3ESZ1kqHpWKkFBZG2cybp0-HNkpUvl6UsqC1Z25czSLw9gt8AQ4FPdt0mJDScpBJgAJ5_kFG6WplHHOhbz8N1-zSQgt5xzKNONQjdjn62Hb29jVLWFvvyh60EcKVu8j1_V2Z791b92wmCgcOvLR-th4161dbTFCNxz3qxANgA7dWm_7odujp54G3BuNFG7YldHbQJO_HLOPp8fl7CVevD3PZ9NFjFkp-7gqACtErEUuSl6VsmgICy5IUMbLUpPWec61SGVuTNFokFgZMEUNWhhqTDZmd-e_e2_UBq1y2v7myqmNV9P35VwVkIqqFAObnln0LgRPRnXe7rQ_KuDqpFS16qRUnZQqADUozX4ABBxtQA</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Nahvi, Ali</creator><creator>Sadoughi, Mohammad Kazem</creator><creator>Arabzadeh, Ali</creator><creator>Sassani, Alireza</creator><creator>Hu, Chao</creator><creator>Ceylan, Halil</creator><creator>Kim, Sunghwan</creator><general>한국CDE학회</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ACYCR</scope></search><sort><creationdate>20191001</creationdate><title>Multi-objective Bayesian optimization of super hydrophobic coatings on asphalt concrete surfaces</title><author>Nahvi, Ali ; Sadoughi, Mohammad Kazem ; Arabzadeh, Ali ; Sassani, Alireza ; Hu, Chao ; Ceylan, Halil ; Kim, Sunghwan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-961c9cccb454709786dec604e4e3077aeaa550a4285ff6da18c9f1f6b1a4fedf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>기계공학</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nahvi, Ali</creatorcontrib><creatorcontrib>Sadoughi, Mohammad Kazem</creatorcontrib><creatorcontrib>Arabzadeh, Ali</creatorcontrib><creatorcontrib>Sassani, Alireza</creatorcontrib><creatorcontrib>Hu, Chao</creatorcontrib><creatorcontrib>Ceylan, Halil</creatorcontrib><creatorcontrib>Kim, Sunghwan</creatorcontrib><collection>CrossRef</collection><collection>Korean Citation Index</collection><jtitle>Journal of computational design and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nahvi, Ali</au><au>Sadoughi, Mohammad Kazem</au><au>Arabzadeh, Ali</au><au>Sassani, Alireza</au><au>Hu, Chao</au><au>Ceylan, Halil</au><au>Kim, Sunghwan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-objective Bayesian optimization of super hydrophobic coatings on asphalt concrete surfaces</atitle><jtitle>Journal of computational design and engineering</jtitle><date>2019-10-01</date><risdate>2019</risdate><volume>6</volume><issue>4</issue><spage>693</spage><epage>704</epage><pages>693-704</pages><issn>2288-5048</issn><issn>2288-4300</issn><eissn>2288-5048</eissn><abstract>Conventional snow removal strategies add direct and indirect expenses to the economy through profit lost due to passenger delays costs, pavement durability issues, contaminating the water runoff, and so on. The use of superhydrophobic (super-water-repellent) coating methods is an alternative to conventional snow and ice removal practices for alleviating snow removal operations issues. As an integrated experimental and analytical study, this work focused on optimizing superhydrophobicity and skid resistance of hydrophobic coatings on asphalt concrete surfaces. A layer-by-layer (LBL) method was utilized for spray depositing polytetrafluoroethylene (PTFE) on an asphalt concrete at different spray times and variable dosages of PTFE. Water contact angle and coefficient of friction at the microtexture level were measured to evaluate superhydrophobicity and skid resistance of the coated asphalt concrete. The optimum dosage and spay time that maximized hydrophobicity and skid resistance of flexible pavement while minimizing cost were estimated using a multi-objective Bayesian optimization (BO) method that replaced the more costly experimental procedure of pavement testing with a cheap-to-evaluate surrogate model constructed based on kriging. In this method, the surrogate model is iteratively updated with new experimental data measured at proper input settings. The result of proposed optimization method showed that the super water repellency and coefficient of friction were not uniformly increased for all the specimens by increasing spray time and dosage. In addition, use of the proposed multi-objective BO method resulted in hydrophobicity and skid resistance being maximally augmented by approximately 23% PTFE dosage at a spray time of 5.5 s. Highlights Effects of spray time and dosage on the hydrophobicity and friction of asphalt were investigated. A layer-by-layer method was utilized for spray depositing polytetrafluoroethylene on an asphalt concrete. The optimum dosage and spay time were estimated by using a multi-objective Bayesian optimization method. An acquisition function that can tackle problems involving multiple objective functions was proposed. The optimum hydrophobicity and skid resistance were achieved with 23% PTFE dosage and at a spray time of 5.5 s.</abstract><pub>한국CDE학회</pub><doi>10.1016/j.jcde.2018.11.005</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2288-5048
ispartof Journal of Computational Design and Engineering , 2019, 6(4), , pp.693-704
issn 2288-5048
2288-4300
2288-5048
language eng
recordid cdi_nrf_kci_oai_kci_go_kr_ARTI_6124974
source ScienceDirect; Oxford Open
subjects 기계공학
title Multi-objective Bayesian optimization of super hydrophobic coatings on asphalt concrete surfaces
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T12%3A45%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-nrf_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-objective%20Bayesian%20optimization%20of%20super%20hydrophobic%20coatings%20on%20asphalt%20concrete%20surfaces&rft.jtitle=Journal%20of%20computational%20design%20and%20engineering&rft.au=Nahvi,%20Ali&rft.date=2019-10-01&rft.volume=6&rft.issue=4&rft.spage=693&rft.epage=704&rft.pages=693-704&rft.issn=2288-5048&rft.eissn=2288-5048&rft_id=info:doi/10.1016/j.jcde.2018.11.005&rft_dat=%3Cnrf_cross%3Eoai_kci_go_kr_ARTI_6124974%3C/nrf_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c378t-961c9cccb454709786dec604e4e3077aeaa550a4285ff6da18c9f1f6b1a4fedf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true