Loading…
Life Cycle Cost Analysis based Optimal Maintenance and Rehabilitation for Underground Infrastructure Management
This study presents a sanitary sewer management decision-making framework incorporating demand forecasting and life cycle cost analysis. The framework provides the asset managers with an alternative approach in sewer management. It is designed to allow asset managers to better allocate limited funds...
Saved in:
Published in: | KSCE journal of civil engineering 2006, 10(4), , pp.243-253 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2128-590dab1fb90d6d1583026a4a6d8d68c6e6a30032227c19186a9a5123901abf9f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c2128-590dab1fb90d6d1583026a4a6d8d68c6e6a30032227c19186a9a5123901abf9f3 |
container_end_page | 253 |
container_issue | 4 |
container_start_page | 243 |
container_title | KSCE journal of civil engineering |
container_volume | 10 |
creator | Chung, Seung-Hyun Hong, Tae-Hoon Han, Seung-Woo Son, Jae-Ho Lee, Sang-Youb |
description | This study presents a sanitary sewer management decision-making framework incorporating demand forecasting and life cycle cost analysis. The framework provides the asset managers with an alternative approach in sewer management. It is designed to allow asset managers to better allocate limited funds for maintenance and rehabilitation by identifying possible problematic sewers and devising a maintenance plan to prevent costly sewer failures. Sewer demand forecasting model is developed using an artificial neural network. The forecasted sewer demand is then used to identify “critical” areas, where the current hydraulic capacity is less than the forecasted sewer demand. In such areas, an optimal maintenance and rehabilitation strategy is developed through the application of probabilistic dynamic programming in conjunction with Markov chain deterioration modeling. |
doi_str_mv | 10.1007/BF02830778 |
format | article |
fullrecord | <record><control><sourceid>nurimedia_nrf_k</sourceid><recordid>TN_cdi_nrf_kci_oai_kci_go_kr_ARTI_663981</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><nurid>NODE01287314</nurid><sourcerecordid>NODE01287314</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2128-590dab1fb90d6d1583026a4a6d8d68c6e6a30032227c19186a9a5123901abf9f3</originalsourceid><addsrcrecordid>eNpFkFtLAzEQhRdRULQv_oKACCKs5tJmk8dab4VqobTPYXY3qdE1qUn2of_e1IrOw5zAfDPhnKI4J_iGYFzd3j1iKhiuKnFQnBBZ8ZIJLA7zm1JeVlKI42IQ4zvOxWgl2Oik8DNrNJpsmy53HxMaO-i20UZUQ9Qtmm-S_YQOvYB1STtwjUbgWrTQb1DbziZI1jtkfEAr1-qwDr7P46kzAWIKfZP6oPO2g7X-1C6dFUcGuqgHv3parB4flpPncjZ_mk7Gs7KhhIpyJHELNTF1Vt6SUbZFOQyBt6LlouGaA9uZoLRqiCSCg4QRoUxiArWRhp0WV_u7Lhj10Vjlwf7o2quPoMaL5VRxzqQgGb3Yo5vgv3odk3r3fcgxREUIYWy4wzJ1vaea4GMM2qhNyMmErSJY7eJX__Fn-PL39z5DurXwR7_O7x9wtlgxMmTftcSCkg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1113346398</pqid></control><display><type>article</type><title>Life Cycle Cost Analysis based Optimal Maintenance and Rehabilitation for Underground Infrastructure Management</title><source>Springer Link</source><creator>Chung, Seung-Hyun ; Hong, Tae-Hoon ; Han, Seung-Woo ; Son, Jae-Ho ; Lee, Sang-Youb</creator><creatorcontrib>Chung, Seung-Hyun ; Hong, Tae-Hoon ; Han, Seung-Woo ; Son, Jae-Ho ; Lee, Sang-Youb</creatorcontrib><description>This study presents a sanitary sewer management decision-making framework incorporating demand forecasting and life cycle cost analysis. The framework provides the asset managers with an alternative approach in sewer management. It is designed to allow asset managers to better allocate limited funds for maintenance and rehabilitation by identifying possible problematic sewers and devising a maintenance plan to prevent costly sewer failures. Sewer demand forecasting model is developed using an artificial neural network. The forecasted sewer demand is then used to identify “critical” areas, where the current hydraulic capacity is less than the forecasted sewer demand. In such areas, an optimal maintenance and rehabilitation strategy is developed through the application of probabilistic dynamic programming in conjunction with Markov chain deterioration modeling.</description><identifier>ISSN: 1226-7988</identifier><identifier>EISSN: 1976-3808</identifier><identifier>DOI: 10.1007/BF02830778</identifier><language>eng</language><publisher>Seoul: 대한토목학회</publisher><subject>Artificial neural networks ; Cost analysis ; Decision analysis ; Decision making ; Demand ; Dynamic programming ; Forecasting ; Life cycle ; Life cycle analysis ; Life cycle costs ; Life cycles ; Maintenance ; Managers ; Markov chains ; Mathematical models ; Neural networks ; Rehabilitation ; Sanitary sewers ; Sewer maintenance ; Sewers ; Studies ; Waste management ; 토목공학</subject><ispartof>KSCE Journal of Civil Engineering, 2006, 10(4), , pp.243-253</ispartof><rights>KSCE and Springer jointly 2006.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2128-590dab1fb90d6d1583026a4a6d8d68c6e6a30032227c19186a9a5123901abf9f3</citedby><cites>FETCH-LOGICAL-c2128-590dab1fb90d6d1583026a4a6d8d68c6e6a30032227c19186a9a5123901abf9f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001019099$$DAccess content in National Research Foundation of Korea (NRF)$$Hfree_for_read</backlink></links><search><creatorcontrib>Chung, Seung-Hyun</creatorcontrib><creatorcontrib>Hong, Tae-Hoon</creatorcontrib><creatorcontrib>Han, Seung-Woo</creatorcontrib><creatorcontrib>Son, Jae-Ho</creatorcontrib><creatorcontrib>Lee, Sang-Youb</creatorcontrib><title>Life Cycle Cost Analysis based Optimal Maintenance and Rehabilitation for Underground Infrastructure Management</title><title>KSCE journal of civil engineering</title><description>This study presents a sanitary sewer management decision-making framework incorporating demand forecasting and life cycle cost analysis. The framework provides the asset managers with an alternative approach in sewer management. It is designed to allow asset managers to better allocate limited funds for maintenance and rehabilitation by identifying possible problematic sewers and devising a maintenance plan to prevent costly sewer failures. Sewer demand forecasting model is developed using an artificial neural network. The forecasted sewer demand is then used to identify “critical” areas, where the current hydraulic capacity is less than the forecasted sewer demand. In such areas, an optimal maintenance and rehabilitation strategy is developed through the application of probabilistic dynamic programming in conjunction with Markov chain deterioration modeling.</description><subject>Artificial neural networks</subject><subject>Cost analysis</subject><subject>Decision analysis</subject><subject>Decision making</subject><subject>Demand</subject><subject>Dynamic programming</subject><subject>Forecasting</subject><subject>Life cycle</subject><subject>Life cycle analysis</subject><subject>Life cycle costs</subject><subject>Life cycles</subject><subject>Maintenance</subject><subject>Managers</subject><subject>Markov chains</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>Rehabilitation</subject><subject>Sanitary sewers</subject><subject>Sewer maintenance</subject><subject>Sewers</subject><subject>Studies</subject><subject>Waste management</subject><subject>토목공학</subject><issn>1226-7988</issn><issn>1976-3808</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNpFkFtLAzEQhRdRULQv_oKACCKs5tJmk8dab4VqobTPYXY3qdE1qUn2of_e1IrOw5zAfDPhnKI4J_iGYFzd3j1iKhiuKnFQnBBZ8ZIJLA7zm1JeVlKI42IQ4zvOxWgl2Oik8DNrNJpsmy53HxMaO-i20UZUQ9Qtmm-S_YQOvYB1STtwjUbgWrTQb1DbziZI1jtkfEAr1-qwDr7P46kzAWIKfZP6oPO2g7X-1C6dFUcGuqgHv3parB4flpPncjZ_mk7Gs7KhhIpyJHELNTF1Vt6SUbZFOQyBt6LlouGaA9uZoLRqiCSCg4QRoUxiArWRhp0WV_u7Lhj10Vjlwf7o2quPoMaL5VRxzqQgGb3Yo5vgv3odk3r3fcgxREUIYWy4wzJ1vaea4GMM2qhNyMmErSJY7eJX__Fn-PL39z5DurXwR7_O7x9wtlgxMmTftcSCkg</recordid><startdate>20060701</startdate><enddate>20060701</enddate><creator>Chung, Seung-Hyun</creator><creator>Hong, Tae-Hoon</creator><creator>Han, Seung-Woo</creator><creator>Son, Jae-Ho</creator><creator>Lee, Sang-Youb</creator><general>대한토목학회</general><general>Springer Nature B.V</general><scope>DBRKI</scope><scope>TDB</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>ACYCR</scope></search><sort><creationdate>20060701</creationdate><title>Life Cycle Cost Analysis based Optimal Maintenance and Rehabilitation for Underground Infrastructure Management</title><author>Chung, Seung-Hyun ; Hong, Tae-Hoon ; Han, Seung-Woo ; Son, Jae-Ho ; Lee, Sang-Youb</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2128-590dab1fb90d6d1583026a4a6d8d68c6e6a30032227c19186a9a5123901abf9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Artificial neural networks</topic><topic>Cost analysis</topic><topic>Decision analysis</topic><topic>Decision making</topic><topic>Demand</topic><topic>Dynamic programming</topic><topic>Forecasting</topic><topic>Life cycle</topic><topic>Life cycle analysis</topic><topic>Life cycle costs</topic><topic>Life cycles</topic><topic>Maintenance</topic><topic>Managers</topic><topic>Markov chains</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>Rehabilitation</topic><topic>Sanitary sewers</topic><topic>Sewer maintenance</topic><topic>Sewers</topic><topic>Studies</topic><topic>Waste management</topic><topic>토목공학</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chung, Seung-Hyun</creatorcontrib><creatorcontrib>Hong, Tae-Hoon</creatorcontrib><creatorcontrib>Han, Seung-Woo</creatorcontrib><creatorcontrib>Son, Jae-Ho</creatorcontrib><creatorcontrib>Lee, Sang-Youb</creatorcontrib><collection>DBPIA - 디비피아</collection><collection>Korean Database (DBpia)</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Korean Citation Index</collection><jtitle>KSCE journal of civil engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chung, Seung-Hyun</au><au>Hong, Tae-Hoon</au><au>Han, Seung-Woo</au><au>Son, Jae-Ho</au><au>Lee, Sang-Youb</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Life Cycle Cost Analysis based Optimal Maintenance and Rehabilitation for Underground Infrastructure Management</atitle><jtitle>KSCE journal of civil engineering</jtitle><date>2006-07-01</date><risdate>2006</risdate><volume>10</volume><issue>4</issue><spage>243</spage><epage>253</epage><pages>243-253</pages><issn>1226-7988</issn><eissn>1976-3808</eissn><abstract>This study presents a sanitary sewer management decision-making framework incorporating demand forecasting and life cycle cost analysis. The framework provides the asset managers with an alternative approach in sewer management. It is designed to allow asset managers to better allocate limited funds for maintenance and rehabilitation by identifying possible problematic sewers and devising a maintenance plan to prevent costly sewer failures. Sewer demand forecasting model is developed using an artificial neural network. The forecasted sewer demand is then used to identify “critical” areas, where the current hydraulic capacity is less than the forecasted sewer demand. In such areas, an optimal maintenance and rehabilitation strategy is developed through the application of probabilistic dynamic programming in conjunction with Markov chain deterioration modeling.</abstract><cop>Seoul</cop><pub>대한토목학회</pub><doi>10.1007/BF02830778</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1226-7988 |
ispartof | KSCE Journal of Civil Engineering, 2006, 10(4), , pp.243-253 |
issn | 1226-7988 1976-3808 |
language | eng |
recordid | cdi_nrf_kci_oai_kci_go_kr_ARTI_663981 |
source | Springer Link |
subjects | Artificial neural networks Cost analysis Decision analysis Decision making Demand Dynamic programming Forecasting Life cycle Life cycle analysis Life cycle costs Life cycles Maintenance Managers Markov chains Mathematical models Neural networks Rehabilitation Sanitary sewers Sewer maintenance Sewers Studies Waste management 토목공학 |
title | Life Cycle Cost Analysis based Optimal Maintenance and Rehabilitation for Underground Infrastructure Management |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A47%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-nurimedia_nrf_k&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Life%20Cycle%20Cost%20Analysis%20based%20Optimal%20Maintenance%20and%20Rehabilitation%20for%20Underground%20Infrastructure%20Management&rft.jtitle=KSCE%20journal%20of%20civil%20engineering&rft.au=Chung,%20Seung-Hyun&rft.date=2006-07-01&rft.volume=10&rft.issue=4&rft.spage=243&rft.epage=253&rft.pages=243-253&rft.issn=1226-7988&rft.eissn=1976-3808&rft_id=info:doi/10.1007/BF02830778&rft_dat=%3Cnurimedia_nrf_k%3ENODE01287314%3C/nurimedia_nrf_k%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2128-590dab1fb90d6d1583026a4a6d8d68c6e6a30032227c19186a9a5123901abf9f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1113346398&rft_id=info:pmid/&rft_nurid=NODE01287314&rfr_iscdi=true |