Loading…

Life Cycle Cost Analysis based Optimal Maintenance and Rehabilitation for Underground Infrastructure Management

This study presents a sanitary sewer management decision-making framework incorporating demand forecasting and life cycle cost analysis. The framework provides the asset managers with an alternative approach in sewer management. It is designed to allow asset managers to better allocate limited funds...

Full description

Saved in:
Bibliographic Details
Published in:KSCE journal of civil engineering 2006, 10(4), , pp.243-253
Main Authors: Chung, Seung-Hyun, Hong, Tae-Hoon, Han, Seung-Woo, Son, Jae-Ho, Lee, Sang-Youb
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2128-590dab1fb90d6d1583026a4a6d8d68c6e6a30032227c19186a9a5123901abf9f3
cites cdi_FETCH-LOGICAL-c2128-590dab1fb90d6d1583026a4a6d8d68c6e6a30032227c19186a9a5123901abf9f3
container_end_page 253
container_issue 4
container_start_page 243
container_title KSCE journal of civil engineering
container_volume 10
creator Chung, Seung-Hyun
Hong, Tae-Hoon
Han, Seung-Woo
Son, Jae-Ho
Lee, Sang-Youb
description This study presents a sanitary sewer management decision-making framework incorporating demand forecasting and life cycle cost analysis. The framework provides the asset managers with an alternative approach in sewer management. It is designed to allow asset managers to better allocate limited funds for maintenance and rehabilitation by identifying possible problematic sewers and devising a maintenance plan to prevent costly sewer failures. Sewer demand forecasting model is developed using an artificial neural network. The forecasted sewer demand is then used to identify “critical” areas, where the current hydraulic capacity is less than the forecasted sewer demand. In such areas, an optimal maintenance and rehabilitation strategy is developed through the application of probabilistic dynamic programming in conjunction with Markov chain deterioration modeling.
doi_str_mv 10.1007/BF02830778
format article
fullrecord <record><control><sourceid>nurimedia_nrf_k</sourceid><recordid>TN_cdi_nrf_kci_oai_kci_go_kr_ARTI_663981</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><nurid>NODE01287314</nurid><sourcerecordid>NODE01287314</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2128-590dab1fb90d6d1583026a4a6d8d68c6e6a30032227c19186a9a5123901abf9f3</originalsourceid><addsrcrecordid>eNpFkFtLAzEQhRdRULQv_oKACCKs5tJmk8dab4VqobTPYXY3qdE1qUn2of_e1IrOw5zAfDPhnKI4J_iGYFzd3j1iKhiuKnFQnBBZ8ZIJLA7zm1JeVlKI42IQ4zvOxWgl2Oik8DNrNJpsmy53HxMaO-i20UZUQ9Qtmm-S_YQOvYB1STtwjUbgWrTQb1DbziZI1jtkfEAr1-qwDr7P46kzAWIKfZP6oPO2g7X-1C6dFUcGuqgHv3parB4flpPncjZ_mk7Gs7KhhIpyJHELNTF1Vt6SUbZFOQyBt6LlouGaA9uZoLRqiCSCg4QRoUxiArWRhp0WV_u7Lhj10Vjlwf7o2quPoMaL5VRxzqQgGb3Yo5vgv3odk3r3fcgxREUIYWy4wzJ1vaea4GMM2qhNyMmErSJY7eJX__Fn-PL39z5DurXwR7_O7x9wtlgxMmTftcSCkg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1113346398</pqid></control><display><type>article</type><title>Life Cycle Cost Analysis based Optimal Maintenance and Rehabilitation for Underground Infrastructure Management</title><source>Springer Link</source><creator>Chung, Seung-Hyun ; Hong, Tae-Hoon ; Han, Seung-Woo ; Son, Jae-Ho ; Lee, Sang-Youb</creator><creatorcontrib>Chung, Seung-Hyun ; Hong, Tae-Hoon ; Han, Seung-Woo ; Son, Jae-Ho ; Lee, Sang-Youb</creatorcontrib><description>This study presents a sanitary sewer management decision-making framework incorporating demand forecasting and life cycle cost analysis. The framework provides the asset managers with an alternative approach in sewer management. It is designed to allow asset managers to better allocate limited funds for maintenance and rehabilitation by identifying possible problematic sewers and devising a maintenance plan to prevent costly sewer failures. Sewer demand forecasting model is developed using an artificial neural network. The forecasted sewer demand is then used to identify “critical” areas, where the current hydraulic capacity is less than the forecasted sewer demand. In such areas, an optimal maintenance and rehabilitation strategy is developed through the application of probabilistic dynamic programming in conjunction with Markov chain deterioration modeling.</description><identifier>ISSN: 1226-7988</identifier><identifier>EISSN: 1976-3808</identifier><identifier>DOI: 10.1007/BF02830778</identifier><language>eng</language><publisher>Seoul: 대한토목학회</publisher><subject>Artificial neural networks ; Cost analysis ; Decision analysis ; Decision making ; Demand ; Dynamic programming ; Forecasting ; Life cycle ; Life cycle analysis ; Life cycle costs ; Life cycles ; Maintenance ; Managers ; Markov chains ; Mathematical models ; Neural networks ; Rehabilitation ; Sanitary sewers ; Sewer maintenance ; Sewers ; Studies ; Waste management ; 토목공학</subject><ispartof>KSCE Journal of Civil Engineering, 2006, 10(4), , pp.243-253</ispartof><rights>KSCE and Springer jointly 2006.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2128-590dab1fb90d6d1583026a4a6d8d68c6e6a30032227c19186a9a5123901abf9f3</citedby><cites>FETCH-LOGICAL-c2128-590dab1fb90d6d1583026a4a6d8d68c6e6a30032227c19186a9a5123901abf9f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001019099$$DAccess content in National Research Foundation of Korea (NRF)$$Hfree_for_read</backlink></links><search><creatorcontrib>Chung, Seung-Hyun</creatorcontrib><creatorcontrib>Hong, Tae-Hoon</creatorcontrib><creatorcontrib>Han, Seung-Woo</creatorcontrib><creatorcontrib>Son, Jae-Ho</creatorcontrib><creatorcontrib>Lee, Sang-Youb</creatorcontrib><title>Life Cycle Cost Analysis based Optimal Maintenance and Rehabilitation for Underground Infrastructure Management</title><title>KSCE journal of civil engineering</title><description>This study presents a sanitary sewer management decision-making framework incorporating demand forecasting and life cycle cost analysis. The framework provides the asset managers with an alternative approach in sewer management. It is designed to allow asset managers to better allocate limited funds for maintenance and rehabilitation by identifying possible problematic sewers and devising a maintenance plan to prevent costly sewer failures. Sewer demand forecasting model is developed using an artificial neural network. The forecasted sewer demand is then used to identify “critical” areas, where the current hydraulic capacity is less than the forecasted sewer demand. In such areas, an optimal maintenance and rehabilitation strategy is developed through the application of probabilistic dynamic programming in conjunction with Markov chain deterioration modeling.</description><subject>Artificial neural networks</subject><subject>Cost analysis</subject><subject>Decision analysis</subject><subject>Decision making</subject><subject>Demand</subject><subject>Dynamic programming</subject><subject>Forecasting</subject><subject>Life cycle</subject><subject>Life cycle analysis</subject><subject>Life cycle costs</subject><subject>Life cycles</subject><subject>Maintenance</subject><subject>Managers</subject><subject>Markov chains</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>Rehabilitation</subject><subject>Sanitary sewers</subject><subject>Sewer maintenance</subject><subject>Sewers</subject><subject>Studies</subject><subject>Waste management</subject><subject>토목공학</subject><issn>1226-7988</issn><issn>1976-3808</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNpFkFtLAzEQhRdRULQv_oKACCKs5tJmk8dab4VqobTPYXY3qdE1qUn2of_e1IrOw5zAfDPhnKI4J_iGYFzd3j1iKhiuKnFQnBBZ8ZIJLA7zm1JeVlKI42IQ4zvOxWgl2Oik8DNrNJpsmy53HxMaO-i20UZUQ9Qtmm-S_YQOvYB1STtwjUbgWrTQb1DbziZI1jtkfEAr1-qwDr7P46kzAWIKfZP6oPO2g7X-1C6dFUcGuqgHv3parB4flpPncjZ_mk7Gs7KhhIpyJHELNTF1Vt6SUbZFOQyBt6LlouGaA9uZoLRqiCSCg4QRoUxiArWRhp0WV_u7Lhj10Vjlwf7o2quPoMaL5VRxzqQgGb3Yo5vgv3odk3r3fcgxREUIYWy4wzJ1vaea4GMM2qhNyMmErSJY7eJX__Fn-PL39z5DurXwR7_O7x9wtlgxMmTftcSCkg</recordid><startdate>20060701</startdate><enddate>20060701</enddate><creator>Chung, Seung-Hyun</creator><creator>Hong, Tae-Hoon</creator><creator>Han, Seung-Woo</creator><creator>Son, Jae-Ho</creator><creator>Lee, Sang-Youb</creator><general>대한토목학회</general><general>Springer Nature B.V</general><scope>DBRKI</scope><scope>TDB</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>ACYCR</scope></search><sort><creationdate>20060701</creationdate><title>Life Cycle Cost Analysis based Optimal Maintenance and Rehabilitation for Underground Infrastructure Management</title><author>Chung, Seung-Hyun ; Hong, Tae-Hoon ; Han, Seung-Woo ; Son, Jae-Ho ; Lee, Sang-Youb</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2128-590dab1fb90d6d1583026a4a6d8d68c6e6a30032227c19186a9a5123901abf9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Artificial neural networks</topic><topic>Cost analysis</topic><topic>Decision analysis</topic><topic>Decision making</topic><topic>Demand</topic><topic>Dynamic programming</topic><topic>Forecasting</topic><topic>Life cycle</topic><topic>Life cycle analysis</topic><topic>Life cycle costs</topic><topic>Life cycles</topic><topic>Maintenance</topic><topic>Managers</topic><topic>Markov chains</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>Rehabilitation</topic><topic>Sanitary sewers</topic><topic>Sewer maintenance</topic><topic>Sewers</topic><topic>Studies</topic><topic>Waste management</topic><topic>토목공학</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chung, Seung-Hyun</creatorcontrib><creatorcontrib>Hong, Tae-Hoon</creatorcontrib><creatorcontrib>Han, Seung-Woo</creatorcontrib><creatorcontrib>Son, Jae-Ho</creatorcontrib><creatorcontrib>Lee, Sang-Youb</creatorcontrib><collection>DBPIA - 디비피아</collection><collection>Korean Database (DBpia)</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Korean Citation Index</collection><jtitle>KSCE journal of civil engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chung, Seung-Hyun</au><au>Hong, Tae-Hoon</au><au>Han, Seung-Woo</au><au>Son, Jae-Ho</au><au>Lee, Sang-Youb</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Life Cycle Cost Analysis based Optimal Maintenance and Rehabilitation for Underground Infrastructure Management</atitle><jtitle>KSCE journal of civil engineering</jtitle><date>2006-07-01</date><risdate>2006</risdate><volume>10</volume><issue>4</issue><spage>243</spage><epage>253</epage><pages>243-253</pages><issn>1226-7988</issn><eissn>1976-3808</eissn><abstract>This study presents a sanitary sewer management decision-making framework incorporating demand forecasting and life cycle cost analysis. The framework provides the asset managers with an alternative approach in sewer management. It is designed to allow asset managers to better allocate limited funds for maintenance and rehabilitation by identifying possible problematic sewers and devising a maintenance plan to prevent costly sewer failures. Sewer demand forecasting model is developed using an artificial neural network. The forecasted sewer demand is then used to identify “critical” areas, where the current hydraulic capacity is less than the forecasted sewer demand. In such areas, an optimal maintenance and rehabilitation strategy is developed through the application of probabilistic dynamic programming in conjunction with Markov chain deterioration modeling.</abstract><cop>Seoul</cop><pub>대한토목학회</pub><doi>10.1007/BF02830778</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1226-7988
ispartof KSCE Journal of Civil Engineering, 2006, 10(4), , pp.243-253
issn 1226-7988
1976-3808
language eng
recordid cdi_nrf_kci_oai_kci_go_kr_ARTI_663981
source Springer Link
subjects Artificial neural networks
Cost analysis
Decision analysis
Decision making
Demand
Dynamic programming
Forecasting
Life cycle
Life cycle analysis
Life cycle costs
Life cycles
Maintenance
Managers
Markov chains
Mathematical models
Neural networks
Rehabilitation
Sanitary sewers
Sewer maintenance
Sewers
Studies
Waste management
토목공학
title Life Cycle Cost Analysis based Optimal Maintenance and Rehabilitation for Underground Infrastructure Management
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A47%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-nurimedia_nrf_k&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Life%20Cycle%20Cost%20Analysis%20based%20Optimal%20Maintenance%20and%20Rehabilitation%20for%20Underground%20Infrastructure%20Management&rft.jtitle=KSCE%20journal%20of%20civil%20engineering&rft.au=Chung,%20Seung-Hyun&rft.date=2006-07-01&rft.volume=10&rft.issue=4&rft.spage=243&rft.epage=253&rft.pages=243-253&rft.issn=1226-7988&rft.eissn=1976-3808&rft_id=info:doi/10.1007/BF02830778&rft_dat=%3Cnurimedia_nrf_k%3ENODE01287314%3C/nurimedia_nrf_k%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2128-590dab1fb90d6d1583026a4a6d8d68c6e6a30032227c19186a9a5123901abf9f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1113346398&rft_id=info:pmid/&rft_nurid=NODE01287314&rfr_iscdi=true