Loading…

Mangiferin ameliorates placental oxidative stress and activates PI3K/Akt/mTOR pathway in mouse model of preeclampsia

Preeclampsia is an inflammatory disease which can induce oxidative stress in placenta. Oxidative stress in preeclampsia is regulated by the phosphatidylinositol-3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway. Mangiferin, an anti-oxidative molecule, is reported to ameliorate oxida...

Full description

Saved in:
Bibliographic Details
Published in:Archives of pharmacal research 2020, 43(2), , pp.233-241
Main Authors: Huang, Jing, Zheng, Lili, Wang, Fang, Su, Yuan, Kong, Hongfang, Xin, Hong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Preeclampsia is an inflammatory disease which can induce oxidative stress in placenta. Oxidative stress in preeclampsia is regulated by the phosphatidylinositol-3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway. Mangiferin, an anti-oxidative molecule, is reported to ameliorate oxidative stress in the kidney and brain through activating the PI3K/Akt/mTOR pathway. We aimed to investigate the effects of mangiferin in a mouse model of preeclampsia, which was induced by phosphatidylserine/dioleoyl-phosphatidycholine (PS/PC) from day 5 to 17 of pregnancy. The female pregnant mice were divided into five groups according to drug treatment. Animals received mangiferin orally at doses of 10, 20, 40 mg/kg/day from day 0.5 to 17. In preeclampsia mouse model, elevated systolic blood pressure and proteinuria were ameliorated by mangiferin treatment. Mangiferin attenuated fms-like tyrosine kinase-1 and placental growth factor expression and oxidative stress in both blood and placenta of preeclampsia mice. The suppressed PI3K/Akt/mTOR pathway in placenta was activated by mangiferin treatment. This study demonstrates that mangiferin ameliorates placental oxidative stress and activates PI3K/Akt/mTOR pathway in a mouse model of preeclampsia.
ISSN:0253-6269
1976-3786
DOI:10.1007/s12272-020-01220-7