Loading…

Phase and electrical properties of PZT thin films embedded with CuO nano-particles by a hybrid sol-gel route

Pb(Zr 0.52 Ti 0.48 )O 3 or PZT thin films embedded with CuO nano-particles were successfully prepared by a hybrid sol-gel process. In this process, CuO (0, 0.1, 0.2, 0.3, 0.4, 0.5 and 1 wt. %) nanopowder was suspended in an organometallic solution of PZT, and then coated on platinised silicon substr...

Full description

Saved in:
Bibliographic Details
Published in:Electronic materials letters 2013, 9(4), , pp.409-412
Main Authors: Sreesattabud, Tharathip, Gibbons, Brady J., Watcharapasorn, Anucha, Jiansirisomboon, Sukanda
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Pb(Zr 0.52 Ti 0.48 )O 3 or PZT thin films embedded with CuO nano-particles were successfully prepared by a hybrid sol-gel process. In this process, CuO (0, 0.1, 0.2, 0.3, 0.4, 0.5 and 1 wt. %) nanopowder was suspended in an organometallic solution of PZT, and then coated on platinised silicon substrate using a spin-coating technique. The influence of CuO nano-particles’ dispersion on the phase of PZT thin films was investigated. XRD results showed a perovskite phase in all films. At the CuO concentration of 0.4–1 wt. %, a second phase was observed. The addition of CuO nano-particles affected the orientation of PZT thin films. The addition was also found to reduce the ferroelectric properties of PZT thin films. However, at 0.2 wt. % CuO concentration, the film exhibited good ferroelectric properties similar to those of PZT films. In addition, the fatigue retention properties of the PZT/CuO system was observed, and it showed 14% fatigue at 10 8 switching bipolar pulse cycles while the fatigue in PZT thin films was found to be 17% at the same switching bipolar pulse cycles.
ISSN:1738-8090
2093-6788
DOI:10.1007/s13391-013-0009-1