Loading…

Rescue of deleterious mutations by the compensatory Y30F mutation in ketosteroid isomerase

Proteins have evolved to compensate for detrimental mutations. However, compensatory mechanisms for protein defects are not well understood. Using ketosteroid isomerase (KSI), we investigated how second-site mutations could recover defective mutant function and stability. Previous results revealed t...

Full description

Saved in:
Bibliographic Details
Published in:Molecules and cells 2013, 36(1), , pp.39-46
Main Authors: Cha, H.J., Pohang University of Science and Technology, Pohang, Republic of Korea, Jang, D.S., Research Institute, Genexine Co., Seongnam, Republic of Korea, Kim, Y.G., Pohang University of Science and Technology, Pohang, Republic of Korea, Hong, B.H., Research Institute, Genexine Co., Seongnam, Republic of Korea, Woo, J.S., Pohang University of Science and Technology, Pohang, Republic of Korea, Kim, K.T., Pohang University of Science and Technology, Pohang, Republic of Korea, Choi, K.Y., Pohang University of Science and Technology, Pohang, Republic of Korea
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c524t-df986aeef960a57dc73cedd88963ffbd0e8cbd68ba65cec1121810facbfb8b4a3
cites cdi_FETCH-LOGICAL-c524t-df986aeef960a57dc73cedd88963ffbd0e8cbd68ba65cec1121810facbfb8b4a3
container_end_page 46
container_issue 1
container_start_page 39
container_title Molecules and cells
container_volume 36
creator Cha, H.J., Pohang University of Science and Technology, Pohang, Republic of Korea
Jang, D.S., Research Institute, Genexine Co., Seongnam, Republic of Korea
Kim, Y.G., Pohang University of Science and Technology, Pohang, Republic of Korea
Hong, B.H., Research Institute, Genexine Co., Seongnam, Republic of Korea
Woo, J.S., Pohang University of Science and Technology, Pohang, Republic of Korea
Kim, K.T., Pohang University of Science and Technology, Pohang, Republic of Korea
Choi, K.Y., Pohang University of Science and Technology, Pohang, Republic of Korea
description Proteins have evolved to compensate for detrimental mutations. However, compensatory mechanisms for protein defects are not well understood. Using ketosteroid isomerase (KSI), we investigated how second-site mutations could recover defective mutant function and stability. Previous results revealed that the Y30F mutation rescued the Y14F, Y55F and Y14F/Y55F mutants by increasing the catalytic activity by 23-, 3- and 1.3-fold, respectively, and the Y55F mutant by increasing the stability by 3.3 kcal/mol. To better understand these observations, we systematically investigated detailed structural and thermodynamic effects of the Y30F mutation on these mutants. Crystal structures of the Y14F/Y30F and Y14F/Y55F mutants were solved at 2.0 and 1.8 previoulsy solved structures of wild-type and other mutant KSIs. Structural analyses revealed that the Y30F mutation partially restored the active-site cleft of these mutant KSIs. The Y30F mutation also increased Y14F and Y14F/Y55F mutant stability by 3.2 and 4.3 kcal/mol, respectively, and the melting temperatures of the Y14F, Y55F and Y14F/Y55F mutants by 6.4°C, 5.1°C and 10.0°C, respectively. Compensatory effects of the Y30F mutation on stability might be due to improved hydrophobic interactions because removal of a hydroxyl group from Tyr30 induced local compaction by neighboring residue movement and enhanced interactions with surrounding hydrophobic residues in the active site. Taken together, our results suggest that perturbed active-site geometry recovery and favorable hydrophobic interactions mediate the role of Y30F as a secondsite suppressor.
doi_str_mv 10.1007/s10059-013-0013-1
format article
fullrecord <record><control><sourceid>proquest_nrf_k</sourceid><recordid>TN_cdi_nrf_kci_oai_kci_go_kr_ARTI_71629</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3028652671</sourcerecordid><originalsourceid>FETCH-LOGICAL-c524t-df986aeef960a57dc73cedd88963ffbd0e8cbd68ba65cec1121810facbfb8b4a3</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxS0EokvhA3AAWeLAKeCx88e5IFUVhYpKlVbtoVwsxxlv3d3EW9tB2m-Ptymrcull5jC_92ZGj5D3wL4AY83XmGvVFgxEwfYFXpAF49AWwAR_SRbAoC5k2cgj8ibGu8w0NZevyREXTclKwRbk9xKjmZB6S3vcYMLg_BTpMCWdnB8j7XY03SI1ftjiGHXyYUdvBDs7INSNdI3Jx6z1rqcu-gGDjviWvLJ6E_HdYz8m12ffr05_FheXP85PTy4KU_EyFb1tZa0RbVszXTW9aYTBvpeyrYW1Xc9Qmq6vZafryqAB4CCBWW0628mu1OKYfJ59x2DV2jjltXvoK6_WQZ0sr85VAzVvM_ltJrdTN2BvcExBb9Q2uEGH3YPu_8nobrPLHyWkbFrBssGnR4Pg7yeMSd35KYz5OwUl8KoCqKpMwUyZ4GMMaA8bgKl9cGoOTuXM1D44BVnz8elpB8W_pDLAZyDm0bjC8GT1M64fZpHVXulVcFH9WnIGFcsAb8RfKdiu4w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1412551155</pqid></control><display><type>article</type><title>Rescue of deleterious mutations by the compensatory Y30F mutation in ketosteroid isomerase</title><source>Open Access: PubMed Central</source><source>ScienceDirect®</source><creator>Cha, H.J., Pohang University of Science and Technology, Pohang, Republic of Korea ; Jang, D.S., Research Institute, Genexine Co., Seongnam, Republic of Korea ; Kim, Y.G., Pohang University of Science and Technology, Pohang, Republic of Korea ; Hong, B.H., Research Institute, Genexine Co., Seongnam, Republic of Korea ; Woo, J.S., Pohang University of Science and Technology, Pohang, Republic of Korea ; Kim, K.T., Pohang University of Science and Technology, Pohang, Republic of Korea ; Choi, K.Y., Pohang University of Science and Technology, Pohang, Republic of Korea</creator><creatorcontrib>Cha, H.J., Pohang University of Science and Technology, Pohang, Republic of Korea ; Jang, D.S., Research Institute, Genexine Co., Seongnam, Republic of Korea ; Kim, Y.G., Pohang University of Science and Technology, Pohang, Republic of Korea ; Hong, B.H., Research Institute, Genexine Co., Seongnam, Republic of Korea ; Woo, J.S., Pohang University of Science and Technology, Pohang, Republic of Korea ; Kim, K.T., Pohang University of Science and Technology, Pohang, Republic of Korea ; Choi, K.Y., Pohang University of Science and Technology, Pohang, Republic of Korea</creatorcontrib><description>Proteins have evolved to compensate for detrimental mutations. However, compensatory mechanisms for protein defects are not well understood. Using ketosteroid isomerase (KSI), we investigated how second-site mutations could recover defective mutant function and stability. Previous results revealed that the Y30F mutation rescued the Y14F, Y55F and Y14F/Y55F mutants by increasing the catalytic activity by 23-, 3- and 1.3-fold, respectively, and the Y55F mutant by increasing the stability by 3.3 kcal/mol. To better understand these observations, we systematically investigated detailed structural and thermodynamic effects of the Y30F mutation on these mutants. Crystal structures of the Y14F/Y30F and Y14F/Y55F mutants were solved at 2.0 and 1.8 previoulsy solved structures of wild-type and other mutant KSIs. Structural analyses revealed that the Y30F mutation partially restored the active-site cleft of these mutant KSIs. The Y30F mutation also increased Y14F and Y14F/Y55F mutant stability by 3.2 and 4.3 kcal/mol, respectively, and the melting temperatures of the Y14F, Y55F and Y14F/Y55F mutants by 6.4°C, 5.1°C and 10.0°C, respectively. Compensatory effects of the Y30F mutation on stability might be due to improved hydrophobic interactions because removal of a hydroxyl group from Tyr30 induced local compaction by neighboring residue movement and enhanced interactions with surrounding hydrophobic residues in the active site. Taken together, our results suggest that perturbed active-site geometry recovery and favorable hydrophobic interactions mediate the role of Y30F as a secondsite suppressor.</description><identifier>ISSN: 1016-8478</identifier><identifier>EISSN: 0219-1032</identifier><identifier>DOI: 10.1007/s10059-013-0013-1</identifier><identifier>PMID: 23740430</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Amino Acid Substitution - genetics ; Biocatalysis - drug effects ; Biochemistry ; Biomedical and Life Sciences ; Biomedicine ; Biotechnology ; Catalytic Domain ; Cell Biology ; Crystallography, X-Ray ; Enzyme Stability - drug effects ; Hydrogen Bonding - drug effects ; ISOMERASAS ; ISOMERASE ; ISOMERASES ; Isomerism ; ketosteroid isomerase,more hydrophobic interactions,rescue mechanism,second-site suppressor ; Kinetics ; Life Sciences ; Mutant Proteins - chemistry ; Mutant Proteins - metabolism ; Mutation - genetics ; Protein Folding - drug effects ; Pseudomonas putida - enzymology ; Steroid Isomerases - genetics ; Urea - pharmacology ; 생물학</subject><ispartof>Molecules and Cells, 2013, 36(1), , pp.39-46</ispartof><rights>The Korean Society for Molecular and Cellular Biology and Springer Netherlands 2013</rights><rights>The Korean Society for Molecular and Cellular Biology. All rights reserved. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c524t-df986aeef960a57dc73cedd88963ffbd0e8cbd68ba65cec1121810facbfb8b4a3</citedby><cites>FETCH-LOGICAL-c524t-df986aeef960a57dc73cedd88963ffbd0e8cbd68ba65cec1121810facbfb8b4a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3887930/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3887930/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23740430$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001789260$$DAccess content in National Research Foundation of Korea (NRF)$$Hfree_for_read</backlink></links><search><creatorcontrib>Cha, H.J., Pohang University of Science and Technology, Pohang, Republic of Korea</creatorcontrib><creatorcontrib>Jang, D.S., Research Institute, Genexine Co., Seongnam, Republic of Korea</creatorcontrib><creatorcontrib>Kim, Y.G., Pohang University of Science and Technology, Pohang, Republic of Korea</creatorcontrib><creatorcontrib>Hong, B.H., Research Institute, Genexine Co., Seongnam, Republic of Korea</creatorcontrib><creatorcontrib>Woo, J.S., Pohang University of Science and Technology, Pohang, Republic of Korea</creatorcontrib><creatorcontrib>Kim, K.T., Pohang University of Science and Technology, Pohang, Republic of Korea</creatorcontrib><creatorcontrib>Choi, K.Y., Pohang University of Science and Technology, Pohang, Republic of Korea</creatorcontrib><title>Rescue of deleterious mutations by the compensatory Y30F mutation in ketosteroid isomerase</title><title>Molecules and cells</title><addtitle>Mol Cells</addtitle><addtitle>Mol Cells</addtitle><description>Proteins have evolved to compensate for detrimental mutations. However, compensatory mechanisms for protein defects are not well understood. Using ketosteroid isomerase (KSI), we investigated how second-site mutations could recover defective mutant function and stability. Previous results revealed that the Y30F mutation rescued the Y14F, Y55F and Y14F/Y55F mutants by increasing the catalytic activity by 23-, 3- and 1.3-fold, respectively, and the Y55F mutant by increasing the stability by 3.3 kcal/mol. To better understand these observations, we systematically investigated detailed structural and thermodynamic effects of the Y30F mutation on these mutants. Crystal structures of the Y14F/Y30F and Y14F/Y55F mutants were solved at 2.0 and 1.8 previoulsy solved structures of wild-type and other mutant KSIs. Structural analyses revealed that the Y30F mutation partially restored the active-site cleft of these mutant KSIs. The Y30F mutation also increased Y14F and Y14F/Y55F mutant stability by 3.2 and 4.3 kcal/mol, respectively, and the melting temperatures of the Y14F, Y55F and Y14F/Y55F mutants by 6.4°C, 5.1°C and 10.0°C, respectively. Compensatory effects of the Y30F mutation on stability might be due to improved hydrophobic interactions because removal of a hydroxyl group from Tyr30 induced local compaction by neighboring residue movement and enhanced interactions with surrounding hydrophobic residues in the active site. Taken together, our results suggest that perturbed active-site geometry recovery and favorable hydrophobic interactions mediate the role of Y30F as a secondsite suppressor.</description><subject>Amino Acid Substitution - genetics</subject><subject>Biocatalysis - drug effects</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Catalytic Domain</subject><subject>Cell Biology</subject><subject>Crystallography, X-Ray</subject><subject>Enzyme Stability - drug effects</subject><subject>Hydrogen Bonding - drug effects</subject><subject>ISOMERASAS</subject><subject>ISOMERASE</subject><subject>ISOMERASES</subject><subject>Isomerism</subject><subject>ketosteroid isomerase,more hydrophobic interactions,rescue mechanism,second-site suppressor</subject><subject>Kinetics</subject><subject>Life Sciences</subject><subject>Mutant Proteins - chemistry</subject><subject>Mutant Proteins - metabolism</subject><subject>Mutation - genetics</subject><subject>Protein Folding - drug effects</subject><subject>Pseudomonas putida - enzymology</subject><subject>Steroid Isomerases - genetics</subject><subject>Urea - pharmacology</subject><subject>생물학</subject><issn>1016-8478</issn><issn>0219-1032</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kU9v1DAQxS0EokvhA3AAWeLAKeCx88e5IFUVhYpKlVbtoVwsxxlv3d3EW9tB2m-Ptymrcull5jC_92ZGj5D3wL4AY83XmGvVFgxEwfYFXpAF49AWwAR_SRbAoC5k2cgj8ibGu8w0NZevyREXTclKwRbk9xKjmZB6S3vcYMLg_BTpMCWdnB8j7XY03SI1ftjiGHXyYUdvBDs7INSNdI3Jx6z1rqcu-gGDjviWvLJ6E_HdYz8m12ffr05_FheXP85PTy4KU_EyFb1tZa0RbVszXTW9aYTBvpeyrYW1Xc9Qmq6vZafryqAB4CCBWW0628mu1OKYfJ59x2DV2jjltXvoK6_WQZ0sr85VAzVvM_ltJrdTN2BvcExBb9Q2uEGH3YPu_8nobrPLHyWkbFrBssGnR4Pg7yeMSd35KYz5OwUl8KoCqKpMwUyZ4GMMaA8bgKl9cGoOTuXM1D44BVnz8elpB8W_pDLAZyDm0bjC8GT1M64fZpHVXulVcFH9WnIGFcsAb8RfKdiu4w</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>Cha, H.J., Pohang University of Science and Technology, Pohang, Republic of Korea</creator><creator>Jang, D.S., Research Institute, Genexine Co., Seongnam, Republic of Korea</creator><creator>Kim, Y.G., Pohang University of Science and Technology, Pohang, Republic of Korea</creator><creator>Hong, B.H., Research Institute, Genexine Co., Seongnam, Republic of Korea</creator><creator>Woo, J.S., Pohang University of Science and Technology, Pohang, Republic of Korea</creator><creator>Kim, K.T., Pohang University of Science and Technology, Pohang, Republic of Korea</creator><creator>Choi, K.Y., Pohang University of Science and Technology, Pohang, Republic of Korea</creator><general>Springer Netherlands</general><general>Korean Society for Molecular and Cellular Biology</general><general>Korea Society for Molecular and Cellular Biology</general><general>한국분자세포생물학회</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BVBZV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope><scope>ACYCR</scope></search><sort><creationdate>20130701</creationdate><title>Rescue of deleterious mutations by the compensatory Y30F mutation in ketosteroid isomerase</title><author>Cha, H.J., Pohang University of Science and Technology, Pohang, Republic of Korea ; Jang, D.S., Research Institute, Genexine Co., Seongnam, Republic of Korea ; Kim, Y.G., Pohang University of Science and Technology, Pohang, Republic of Korea ; Hong, B.H., Research Institute, Genexine Co., Seongnam, Republic of Korea ; Woo, J.S., Pohang University of Science and Technology, Pohang, Republic of Korea ; Kim, K.T., Pohang University of Science and Technology, Pohang, Republic of Korea ; Choi, K.Y., Pohang University of Science and Technology, Pohang, Republic of Korea</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c524t-df986aeef960a57dc73cedd88963ffbd0e8cbd68ba65cec1121810facbfb8b4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Amino Acid Substitution - genetics</topic><topic>Biocatalysis - drug effects</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Catalytic Domain</topic><topic>Cell Biology</topic><topic>Crystallography, X-Ray</topic><topic>Enzyme Stability - drug effects</topic><topic>Hydrogen Bonding - drug effects</topic><topic>ISOMERASAS</topic><topic>ISOMERASE</topic><topic>ISOMERASES</topic><topic>Isomerism</topic><topic>ketosteroid isomerase,more hydrophobic interactions,rescue mechanism,second-site suppressor</topic><topic>Kinetics</topic><topic>Life Sciences</topic><topic>Mutant Proteins - chemistry</topic><topic>Mutant Proteins - metabolism</topic><topic>Mutation - genetics</topic><topic>Protein Folding - drug effects</topic><topic>Pseudomonas putida - enzymology</topic><topic>Steroid Isomerases - genetics</topic><topic>Urea - pharmacology</topic><topic>생물학</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cha, H.J., Pohang University of Science and Technology, Pohang, Republic of Korea</creatorcontrib><creatorcontrib>Jang, D.S., Research Institute, Genexine Co., Seongnam, Republic of Korea</creatorcontrib><creatorcontrib>Kim, Y.G., Pohang University of Science and Technology, Pohang, Republic of Korea</creatorcontrib><creatorcontrib>Hong, B.H., Research Institute, Genexine Co., Seongnam, Republic of Korea</creatorcontrib><creatorcontrib>Woo, J.S., Pohang University of Science and Technology, Pohang, Republic of Korea</creatorcontrib><creatorcontrib>Kim, K.T., Pohang University of Science and Technology, Pohang, Republic of Korea</creatorcontrib><creatorcontrib>Choi, K.Y., Pohang University of Science and Technology, Pohang, Republic of Korea</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>East &amp; South Asia Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Korean Citation Index</collection><jtitle>Molecules and cells</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cha, H.J., Pohang University of Science and Technology, Pohang, Republic of Korea</au><au>Jang, D.S., Research Institute, Genexine Co., Seongnam, Republic of Korea</au><au>Kim, Y.G., Pohang University of Science and Technology, Pohang, Republic of Korea</au><au>Hong, B.H., Research Institute, Genexine Co., Seongnam, Republic of Korea</au><au>Woo, J.S., Pohang University of Science and Technology, Pohang, Republic of Korea</au><au>Kim, K.T., Pohang University of Science and Technology, Pohang, Republic of Korea</au><au>Choi, K.Y., Pohang University of Science and Technology, Pohang, Republic of Korea</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rescue of deleterious mutations by the compensatory Y30F mutation in ketosteroid isomerase</atitle><jtitle>Molecules and cells</jtitle><stitle>Mol Cells</stitle><addtitle>Mol Cells</addtitle><date>2013-07-01</date><risdate>2013</risdate><volume>36</volume><issue>1</issue><spage>39</spage><epage>46</epage><pages>39-46</pages><issn>1016-8478</issn><eissn>0219-1032</eissn><abstract>Proteins have evolved to compensate for detrimental mutations. However, compensatory mechanisms for protein defects are not well understood. Using ketosteroid isomerase (KSI), we investigated how second-site mutations could recover defective mutant function and stability. Previous results revealed that the Y30F mutation rescued the Y14F, Y55F and Y14F/Y55F mutants by increasing the catalytic activity by 23-, 3- and 1.3-fold, respectively, and the Y55F mutant by increasing the stability by 3.3 kcal/mol. To better understand these observations, we systematically investigated detailed structural and thermodynamic effects of the Y30F mutation on these mutants. Crystal structures of the Y14F/Y30F and Y14F/Y55F mutants were solved at 2.0 and 1.8 previoulsy solved structures of wild-type and other mutant KSIs. Structural analyses revealed that the Y30F mutation partially restored the active-site cleft of these mutant KSIs. The Y30F mutation also increased Y14F and Y14F/Y55F mutant stability by 3.2 and 4.3 kcal/mol, respectively, and the melting temperatures of the Y14F, Y55F and Y14F/Y55F mutants by 6.4°C, 5.1°C and 10.0°C, respectively. Compensatory effects of the Y30F mutation on stability might be due to improved hydrophobic interactions because removal of a hydroxyl group from Tyr30 induced local compaction by neighboring residue movement and enhanced interactions with surrounding hydrophobic residues in the active site. Taken together, our results suggest that perturbed active-site geometry recovery and favorable hydrophobic interactions mediate the role of Y30F as a secondsite suppressor.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>23740430</pmid><doi>10.1007/s10059-013-0013-1</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1016-8478
ispartof Molecules and Cells, 2013, 36(1), , pp.39-46
issn 1016-8478
0219-1032
language eng
recordid cdi_nrf_kci_oai_kci_go_kr_ARTI_71629
source Open Access: PubMed Central; ScienceDirect®
subjects Amino Acid Substitution - genetics
Biocatalysis - drug effects
Biochemistry
Biomedical and Life Sciences
Biomedicine
Biotechnology
Catalytic Domain
Cell Biology
Crystallography, X-Ray
Enzyme Stability - drug effects
Hydrogen Bonding - drug effects
ISOMERASAS
ISOMERASE
ISOMERASES
Isomerism
ketosteroid isomerase,more hydrophobic interactions,rescue mechanism,second-site suppressor
Kinetics
Life Sciences
Mutant Proteins - chemistry
Mutant Proteins - metabolism
Mutation - genetics
Protein Folding - drug effects
Pseudomonas putida - enzymology
Steroid Isomerases - genetics
Urea - pharmacology
생물학
title Rescue of deleterious mutations by the compensatory Y30F mutation in ketosteroid isomerase
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T06%3A06%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_nrf_k&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rescue%20of%20deleterious%20mutations%20by%20the%20compensatory%20Y30F%20mutation%20in%20ketosteroid%20isomerase&rft.jtitle=Molecules%20and%20cells&rft.au=Cha,%20H.J.,%20Pohang%20University%20of%20Science%20and%20Technology,%20Pohang,%20Republic%20of%20Korea&rft.date=2013-07-01&rft.volume=36&rft.issue=1&rft.spage=39&rft.epage=46&rft.pages=39-46&rft.issn=1016-8478&rft.eissn=0219-1032&rft_id=info:doi/10.1007/s10059-013-0013-1&rft_dat=%3Cproquest_nrf_k%3E3028652671%3C/proquest_nrf_k%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c524t-df986aeef960a57dc73cedd88963ffbd0e8cbd68ba65cec1121810facbfb8b4a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1412551155&rft_id=info:pmid/23740430&rfr_iscdi=true