Loading…

The time-course and RNA interference of TNF-α, IL-6, and IL-1β expression on neuropathic pain induced by L5 spinal nerve transection in rats

The objective of this study was to investigate the time-course of the expression of TNF-α, IL-6, and IL-1β after L5 spinal nerve transection (SNT), and to determine the effect of small interfering RNA (siRNA) targeting these cytokines on neuropathic pain. Rats received control siRNA (CON group, n =...

Full description

Saved in:
Bibliographic Details
Published in:Korean journal of anesthesiology 2015, 68(2), , pp.159-169
Main Authors: Choi, Byung Moon, Lee, Soo Han, An, Sang Mee, Park, Do Yang, Lee, Gwan Woo, Noh, Gyu-Jeong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The objective of this study was to investigate the time-course of the expression of TNF-α, IL-6, and IL-1β after L5 spinal nerve transection (SNT), and to determine the effect of small interfering RNA (siRNA) targeting these cytokines on neuropathic pain. Rats received control siRNA (CON group, n = 80) or a cocktail of siRNAs targeting these cytokines (COCK group, n = 70). The siRNAs were given via intrathecal catheter 1 d prior to SNT, on the operation day, and 1, 2 and 3 d postoperatively. Behavioral tests and levels of the cytokine mRNAs and proteins as well as glial cell activity were following the L5 SNT. In the CON group, TNF-α and IL-1β mRNA levels increased immediately after SNT and remained high for 6 d, while IL-6 transcripts only began to increase after 12 h. TNF-α and IL-1β mRNA levels in the COCK group were lower than in the CON group at all time points (P < 0.05). In the behavioral tests, allodynia and hyperalgesia were significantly lower in the COCK group from 2 d after SNT (P < 0.05). The time courses of TNF-α, IL-6 and IL-1β mRNA expression after L5 SNT differ. RNA interference may be a method of reducing the development of mechanical allodynia and hyperalgesia in response to nerve injury.
ISSN:2005-6419
2005-7563
DOI:10.4097/kjae.2015.68.2.159