Loading…
POSITIVE p-HARMONIC FUNCTIONS ON GRAPHS
Suppose that an infinite graph G of bounded degree has finite number of ends, each of which is p-regular, where $1
Saved in:
Published in: | Taehan Suhakhoe hoebo 2005, 42(2), , pp.421-432 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | Korean |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 432 |
container_issue | 2 |
container_start_page | 421 |
container_title | Taehan Suhakhoe hoebo |
container_volume | 42 |
creator | KIM, SEOK-WOO LEE, YONG-HAH |
description | Suppose that an infinite graph G of bounded degree has finite number of ends, each of which is p-regular, where $1 |
format | article |
fullrecord | <record><control><sourceid>nrf_kisti</sourceid><recordid>TN_cdi_nrf_kci_oai_kci_go_kr_ARTI_730780</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_kci_go_kr_ARTI_730780</sourcerecordid><originalsourceid>FETCH-LOGICAL-k630-ed9576bbeaf0b6aa828bce3fe0c5f90e747432da2591f6d2176b45110e2b89653</originalsourceid><addsrcrecordid>eNotzE1LwzAcgPEgE-ym36EX0Uvgn_f0WMq2Rmcz2uo1pG0itWOT1e-Pw3l6Lj-eG5RQyjhmQOQCJQSIwFoyfoeW8_wFwAXNZIKe9rYxrflYp9-4zOs3W5ki3bxXRWts1aS2Srd1vi-be3Qb_WEOD_9doXazbosS7-zWFPkOT5IBDkMmlOy64CN00ntNddcHFgP0ImYQFFec0cFTkZEoB0oumAtCINBOZ1KwFXq-bo_n6KZ-dCc__vXz5Kazy-vWOMVAabjQxyudxvlndMdhPriX_NVSAAFUMkUU0ZqwX9ayRWI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>POSITIVE p-HARMONIC FUNCTIONS ON GRAPHS</title><source>The Electronic Journals Library</source><source>Freely Accessible Science Journals - check A-Z of ejournals</source><creator>KIM, SEOK-WOO ; LEE, YONG-HAH</creator><creatorcontrib>KIM, SEOK-WOO ; LEE, YONG-HAH</creatorcontrib><description>Suppose that an infinite graph G of bounded degree has finite number of ends, each of which is p-regular, where $1<p<\infty$. Then we can identify all the positive (bounded, respectively) p-harmonic functions on G.</description><identifier>ISSN: 1015-8634</identifier><identifier>EISSN: 2234-3016</identifier><language>kor</language><publisher>대한수학회</publisher><subject>수학</subject><ispartof>대한수학회보, 2005, 42(2), , pp.421-432</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881</link.rule.ids><backlink>$$Uhttps://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001106368$$DAccess content in National Research Foundation of Korea (NRF)$$Hfree_for_read</backlink></links><search><creatorcontrib>KIM, SEOK-WOO</creatorcontrib><creatorcontrib>LEE, YONG-HAH</creatorcontrib><title>POSITIVE p-HARMONIC FUNCTIONS ON GRAPHS</title><title>Taehan Suhakhoe hoebo</title><addtitle>대한수학회보</addtitle><description>Suppose that an infinite graph G of bounded degree has finite number of ends, each of which is p-regular, where $1<p<\infty$. Then we can identify all the positive (bounded, respectively) p-harmonic functions on G.</description><subject>수학</subject><issn>1015-8634</issn><issn>2234-3016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNotzE1LwzAcgPEgE-ym36EX0Uvgn_f0WMq2Rmcz2uo1pG0itWOT1e-Pw3l6Lj-eG5RQyjhmQOQCJQSIwFoyfoeW8_wFwAXNZIKe9rYxrflYp9-4zOs3W5ki3bxXRWts1aS2Srd1vi-be3Qb_WEOD_9doXazbosS7-zWFPkOT5IBDkMmlOy64CN00ntNddcHFgP0ImYQFFec0cFTkZEoB0oumAtCINBOZ1KwFXq-bo_n6KZ-dCc__vXz5Kazy-vWOMVAabjQxyudxvlndMdhPriX_NVSAAFUMkUU0ZqwX9ayRWI</recordid><startdate>200505</startdate><enddate>200505</enddate><creator>KIM, SEOK-WOO</creator><creator>LEE, YONG-HAH</creator><general>대한수학회</general><scope>JDI</scope><scope>ACYCR</scope></search><sort><creationdate>200505</creationdate><title>POSITIVE p-HARMONIC FUNCTIONS ON GRAPHS</title><author>KIM, SEOK-WOO ; LEE, YONG-HAH</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-k630-ed9576bbeaf0b6aa828bce3fe0c5f90e747432da2591f6d2176b45110e2b89653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>kor</language><creationdate>2005</creationdate><topic>수학</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>KIM, SEOK-WOO</creatorcontrib><creatorcontrib>LEE, YONG-HAH</creatorcontrib><collection>KoreaScience</collection><collection>Korean Citation Index</collection><jtitle>Taehan Suhakhoe hoebo</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KIM, SEOK-WOO</au><au>LEE, YONG-HAH</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>POSITIVE p-HARMONIC FUNCTIONS ON GRAPHS</atitle><jtitle>Taehan Suhakhoe hoebo</jtitle><addtitle>대한수학회보</addtitle><date>2005-05</date><risdate>2005</risdate><volume>42</volume><issue>2</issue><spage>421</spage><epage>432</epage><pages>421-432</pages><issn>1015-8634</issn><eissn>2234-3016</eissn><abstract>Suppose that an infinite graph G of bounded degree has finite number of ends, each of which is p-regular, where $1<p<\infty$. Then we can identify all the positive (bounded, respectively) p-harmonic functions on G.</abstract><pub>대한수학회</pub><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1015-8634 |
ispartof | 대한수학회보, 2005, 42(2), , pp.421-432 |
issn | 1015-8634 2234-3016 |
language | kor |
recordid | cdi_nrf_kci_oai_kci_go_kr_ARTI_730780 |
source | The Electronic Journals Library; Freely Accessible Science Journals - check A-Z of ejournals |
subjects | 수학 |
title | POSITIVE p-HARMONIC FUNCTIONS ON GRAPHS |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T20%3A55%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-nrf_kisti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=POSITIVE%20p-HARMONIC%20FUNCTIONS%20ON%20GRAPHS&rft.jtitle=Taehan%20Suhakhoe%20hoebo&rft.au=KIM,%20SEOK-WOO&rft.date=2005-05&rft.volume=42&rft.issue=2&rft.spage=421&rft.epage=432&rft.pages=421-432&rft.issn=1015-8634&rft.eissn=2234-3016&rft_id=info:doi/&rft_dat=%3Cnrf_kisti%3Eoai_kci_go_kr_ARTI_730780%3C/nrf_kisti%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-k630-ed9576bbeaf0b6aa828bce3fe0c5f90e747432da2591f6d2176b45110e2b89653%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |