Loading…
Numerical approach for quantification of selfwastage phenomena in sodium-cooled fast reactor
Sodium-cooled fast breeder reactors use liquid sodium as a moderator and coolant to transfer heat from the reactor core. The main hazard associated with sodium is its rapid reaction with water. Sodium–water reaction (SWR) takes place when water or vapor leak into the sodium side through a crack on a...
Saved in:
Published in: | Nuclear engineering and technology 2015, 47(6), , pp.700-711 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Sodium-cooled fast breeder reactors use liquid sodium as a moderator and coolant to transfer heat from the reactor core. The main hazard associated with sodium is its rapid reaction with water. Sodium–water reaction (SWR) takes place when water or vapor leak into the sodium side through a crack on a heat-transfer tube in a steam generator. If the SWR continues for some time, the SWR will damage the surface of the defective area, causing it to enlarge. This self-enlargement of the crack is called “self-wastage phenomena.” A stepwise numerical evaluation model of the self-wastage phenomena was devised using a computational code of multicomponent multiphase flow involving a sodium–water chemical reaction: sodiumwater reaction analysis physics of interdisciplinary multiphase flow (SERAPHIM). The temperature of gas mixture and the concentration of NaOH at the surface of the tube wall are obtained by a numerical calculation using SERAPHIM. Averaged thermophysical properties are used to assess the local wastage depth at the tube surface. By reflecting the wastage depth to the computational grid, the self-wastage phenomena are evaluated. A two-dimensional benchmark analysis of an SWAT (Sodium-Water reAction Test rig) experiment is carried out to evaluate the feasibility of the numerical model. Numerical results show that the geometry and scale of enlarged cracks show good agreement with the experimental result. Enlarged cracks appear to taper inward to a significantly smaller opening on the inside of the tube wall. The enlarged outer diameter of the crack is 4.72 mm, which shows good agreement with the experimental data (4.96 mm). |
---|---|
ISSN: | 1738-5733 2234-358X |
DOI: | 10.1016/j.net.2015.06.008 |