Loading…
Analysis and testing of PSO variants through application in EEG/ERP adaptive filtering approach
Introduction An improved method for adaptive noise canceller (ANC) is proposed for electroencephalography (EEG)/event related potential (ERP) filtering in case of EEG self interference. ANC is implemented through five versions of Particles Swarm Optimization (PSO) technique. Methods A comparative st...
Saved in:
Published in: | Biomedical engineering letters 2012, 2(3), , pp.186-197 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Introduction
An improved method for adaptive noise canceller (ANC) is proposed for electroencephalography (EEG)/event related potential (ERP) filtering in case of EEG self interference. ANC is implemented through five versions of Particles Swarm Optimization (PSO) technique.
Methods
A comparative study of the performance of PSO and its different versions such as constant weighted inertia PSO (CWI PSO), linear decay inertia PSO (LDI-PSO), constriction factors inertia PSO (CFI-PSO), nonlinear inertia PSO (NLI-PSO), and dynamic inertia PSO (DI-PSO) has been done. Fidelity parameters like signal to noise ratio (SNR) in dB, correlation between resultant and template ERP, and mean square error (MSE) are observed with varying range of particles and inertia weights.
Results
In this the results of two data sets, simulated ERP and real visual evoked potential (VEP) are compared. Fidelity parameters as well as quality (shape) of extracted ERP are determined with Kurtosis and skewness measures.
Conclusions
From the simulation results and comparative studies, it is found that that NLI and LDI version of PSO are most suitable for ANC for ERP filtering. |
---|---|
ISSN: | 2093-9868 2093-985X |
DOI: | 10.1007/s13534-012-0071-x |