Loading…
Optimization study of pressure-swing distillation for the separation process of a maximum-boiling azeotropic system of water-ethylenediamine
The separation of ethylenediamine (EDA) from aqueous solution is a challenging problem because its mixture forms an azeotrope. Pressure-swing distillation (PSD) as a method of separating azeotropic mixture were investingated. For a maximum-boiling azeotropic system, pressure change does not greatly...
Saved in:
Published in: | The Korean journal of chemical engineering 2016, 33(1), 190, pp.46-56 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The separation of ethylenediamine (EDA) from aqueous solution is a challenging problem because its mixture forms an azeotrope. Pressure-swing distillation (PSD) as a method of separating azeotropic mixture were investingated. For a maximum-boiling azeotropic system, pressure change does not greatly affect the azeotropic composition of the system. However, the feasibility of using PSD was still analyzed through process simulation. Experimental vaporliquid equilibrium data of water-EDA system was studied to predict the suitability of thermodynamic model to be applied. This study performed an optimization of design parameters for each distillation column. Different combinations of operating pressures for the low- and high-pressure columns were used for each PSD simulation case. After the most efficient operating pressures were identified, two column configurations, low-high (LP+HP) and high-low (HP+ LP) pressure column configuration, were further compared. Heat integration was applied to PSD system to reduce low and high temperature utility consumption. |
---|---|
ISSN: | 0256-1115 1975-7220 |
DOI: | 10.1007/s11814-015-0100-4 |