Loading…
A New Quorum-Sensing Inhibitor Attenuates Virulence and Decreases Antibiotic Resistance in Pseudomonas aeruginosa
Quorum sensing (QS) has been a novel target for the treatment of infectious diseases. Here structural analogs of Pseudomonas aeruginosa autoinducer N-acyl homoserine lactone (AHL) were investigated for QS inhibitor (QSI) activity and a novel QSI was discovered, N-decanoyl-L-homoserine benzyl ester (...
Saved in:
Published in: | The journal of microbiology 2012, 50(6), , pp.987-993 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Quorum sensing (QS) has been a novel target for the treatment of infectious diseases. Here structural analogs of Pseudomonas aeruginosa autoinducer N-acyl homoserine lactone (AHL) were investigated for QS inhibitor (QSI) activity and a novel QSI was discovered, N-decanoyl-L-homoserine benzyl ester (C2). Virulence assays showed that C2 downregulated total protease and elastase activities, as well as the production of rhamnolipid, that are controlled by QS in P. aeruginosa wild-type strain PAO1 without affecting growth. C2 was also shown to inhibit swarming motility of PAO1. Using a microdilution checkerboard method, we identified synergistic interactions between C2 and several antibiotics, tobramycin, gentamycin, cefepime, and meropenem. Data from real-time RT-PCR suggested that C2 inhibited the expression of lasR (29.67%), lasI (21.57%), rhlR (28.20%), and rhlI (29.03%). |
---|---|
ISSN: | 1225-8873 1976-3794 |
DOI: | 10.1007/s12275-012-2149-7 |