Loading…

Response of Saccharomyces cerevisiae to stress-free acidification

Genome-wide transcriptional analysis of a Saccharomyces cerevisiae batch culture revealed that more than 829 genes were regulated in response to an environmental shift from pH 6 to pH 3 by added sulfuric acid. This shift in pH was not detrimental to the rate of growth compared to a control culture t...

Full description

Saved in:
Bibliographic Details
Published in:The journal of microbiology 2009, 47(1), , pp.1-8
Main Authors: Chen, Allen Kuan-Liang (University of New South Wales, Sydney, Australia), Gelling, Cristy (University of New South Wales, Sydney, Australia), Rogers, Peter L. (University of New South Wales, Sydney, Australia), Dawes, Ian W. (University of New South Wales, Sydney, Australia), Rosche, Bettina (University of New South Wales, Sydney, Australia), E-mail: b.rosche@unsw.edu.au
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c455t-8223de8488343c7be5da458c27fe7b324b8bf001b7fc3d45ef64182b653bba283
cites cdi_FETCH-LOGICAL-c455t-8223de8488343c7be5da458c27fe7b324b8bf001b7fc3d45ef64182b653bba283
container_end_page 8
container_issue 1
container_start_page 1
container_title The journal of microbiology
container_volume 47
creator Chen, Allen Kuan-Liang (University of New South Wales, Sydney, Australia)
Gelling, Cristy (University of New South Wales, Sydney, Australia)
Rogers, Peter L. (University of New South Wales, Sydney, Australia)
Dawes, Ian W. (University of New South Wales, Sydney, Australia)
Rosche, Bettina (University of New South Wales, Sydney, Australia), E-mail: b.rosche@unsw.edu.au
description Genome-wide transcriptional analysis of a Saccharomyces cerevisiae batch culture revealed that more than 829 genes were regulated in response to an environmental shift from pH 6 to pH 3 by added sulfuric acid. This shift in pH was not detrimental to the rate of growth compared to a control culture that was maintained at pH 6 and the transcriptional changes most strikingly implicated not up- but down-regulation of stress responses. In addition, the transcriptional changes upon acid addition indicated remodeling of the cell wall and central carbon metabolism. The overall trend of changes was similar for the pH-shift experiment and the pH 6 control. However, the changes in the pH 6 control were much weaker and occurred 2.5 h later than in the pH-shift experiment. Thus, the reaction to the steep pH decrease was an immediate response within the normal repertoire of adaptation shown in later stages of fermentation at pH 6. Artificially preventing the yeast from acidifying the medium may be considered physiologically stressful under the tested conditions.
doi_str_mv 10.1007/s12275-008-0167-2
format article
fullrecord <record><control><sourceid>proquest_nrf_k</sourceid><recordid>TN_cdi_nrf_kci_oai_kci_go_kr_ARTI_817571</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1894261671</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-8223de8488343c7be5da458c27fe7b324b8bf001b7fc3d45ef64182b653bba283</originalsourceid><addsrcrecordid>eNqFkU1rGzEQhkVpaD7aH9BDy5JD6GXb0ddKezShHyGBgpuehaQduUrslSutC_n3kbuGQA_NaQTzzDtoHkLeUvhIAdSnQhlTsgXQLdBOtewFOaG96lquevGyvhmTrdaKH5PTUu4AOsoFe0WOac9YL7Q8IYsllm0aCzYpND-s979sTpsHj6XxmPFPLNFiM6WmTBlLaUNGbKyPQwzR2ymm8TU5CnZd8M2hnpGfXz7fXn5rb75_vbpc3LReSDm1mjE-oBZac8G9cigHK6T2TAVUjjPhtAsA1Kng-SAkhk5QzVwnuXOWaX5GPsy5Yw7m3keTbPxbV8ncZ7NY3l4ZTZVUtKIXM7rN6fcOy2Q2sXhcr-2IaVdM1_VCgFTPgozSelfJKnj-D3iXdnms_zX1kiBAS6gQnSGfUykZg9nmuLH5wVAwe2FmFmaqMLMXZvbB7w_BO7fB4WniYKgCbAZKbY0rzE-b_5f6bh4KNhm7yrGY6yUD6AFEp3r-CNFzp3E</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>229040850</pqid></control><display><type>article</type><title>Response of Saccharomyces cerevisiae to stress-free acidification</title><source>Springer Nature</source><creator>Chen, Allen Kuan-Liang (University of New South Wales, Sydney, Australia) ; Gelling, Cristy (University of New South Wales, Sydney, Australia) ; Rogers, Peter L. (University of New South Wales, Sydney, Australia) ; Dawes, Ian W. (University of New South Wales, Sydney, Australia) ; Rosche, Bettina (University of New South Wales, Sydney, Australia), E-mail: b.rosche@unsw.edu.au</creator><creatorcontrib>Chen, Allen Kuan-Liang (University of New South Wales, Sydney, Australia) ; Gelling, Cristy (University of New South Wales, Sydney, Australia) ; Rogers, Peter L. (University of New South Wales, Sydney, Australia) ; Dawes, Ian W. (University of New South Wales, Sydney, Australia) ; Rosche, Bettina (University of New South Wales, Sydney, Australia), E-mail: b.rosche@unsw.edu.au</creatorcontrib><description>Genome-wide transcriptional analysis of a Saccharomyces cerevisiae batch culture revealed that more than 829 genes were regulated in response to an environmental shift from pH 6 to pH 3 by added sulfuric acid. This shift in pH was not detrimental to the rate of growth compared to a control culture that was maintained at pH 6 and the transcriptional changes most strikingly implicated not up- but down-regulation of stress responses. In addition, the transcriptional changes upon acid addition indicated remodeling of the cell wall and central carbon metabolism. The overall trend of changes was similar for the pH-shift experiment and the pH 6 control. However, the changes in the pH 6 control were much weaker and occurred 2.5 h later than in the pH-shift experiment. Thus, the reaction to the steep pH decrease was an immediate response within the normal repertoire of adaptation shown in later stages of fermentation at pH 6. Artificially preventing the yeast from acidifying the medium may be considered physiologically stressful under the tested conditions.</description><identifier>ISSN: 1225-8873</identifier><identifier>EISSN: 1976-3794</identifier><identifier>DOI: 10.1007/s12275-008-0167-2</identifier><identifier>PMID: 19229485</identifier><language>eng</language><publisher>Heidelberg: The Microbiological Society of Korea</publisher><subject>ACIDIFICACION ; ACIDIFICATION ; Adaptation, Biological - genetics ; Biomedical and Life Sciences ; Cell Wall - genetics ; Cell Wall - metabolism ; Citric Acid Cycle - genetics ; Down-Regulation ; Electron Transport Chain Complex Proteins - biosynthesis ; Electron Transport Chain Complex Proteins - genetics ; Enzymes ; FERMENTACION ; FERMENTATION ; Fermentation - genetics ; Gene Expression Profiling ; Gene Expression Regulation, Fungal ; Glucose ; Glucose - genetics ; Glucose - metabolism ; Hydrogen-Ion Concentration ; Life Sciences ; Metabolism ; Metabolites ; Microbiology ; Mitochondrial Proteins - biosynthesis ; Mitochondrial Proteins - genetics ; pyruvate decarboxylase ; Pyruvate Decarboxylase - metabolism ; SACCHAROMYCES CEREVISIAE ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - growth &amp; development ; Saccharomyces cerevisiae - metabolism ; stress response ; Sulfuric acid ; Yeast ; Yeasts ; 생물학</subject><ispartof>The Journal of Microbiology, 2009, 47(1), , pp.1-8</ispartof><rights>The Microbiological Society of Korea and Springer-Verlag Berlin Heidelber GmbH 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-8223de8488343c7be5da458c27fe7b324b8bf001b7fc3d45ef64182b653bba283</citedby><cites>FETCH-LOGICAL-c455t-8223de8488343c7be5da458c27fe7b324b8bf001b7fc3d45ef64182b653bba283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19229485$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001322601$$DAccess content in National Research Foundation of Korea (NRF)$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Allen Kuan-Liang (University of New South Wales, Sydney, Australia)</creatorcontrib><creatorcontrib>Gelling, Cristy (University of New South Wales, Sydney, Australia)</creatorcontrib><creatorcontrib>Rogers, Peter L. (University of New South Wales, Sydney, Australia)</creatorcontrib><creatorcontrib>Dawes, Ian W. (University of New South Wales, Sydney, Australia)</creatorcontrib><creatorcontrib>Rosche, Bettina (University of New South Wales, Sydney, Australia), E-mail: b.rosche@unsw.edu.au</creatorcontrib><title>Response of Saccharomyces cerevisiae to stress-free acidification</title><title>The journal of microbiology</title><addtitle>J Microbiol</addtitle><addtitle>J Microbiol</addtitle><description>Genome-wide transcriptional analysis of a Saccharomyces cerevisiae batch culture revealed that more than 829 genes were regulated in response to an environmental shift from pH 6 to pH 3 by added sulfuric acid. This shift in pH was not detrimental to the rate of growth compared to a control culture that was maintained at pH 6 and the transcriptional changes most strikingly implicated not up- but down-regulation of stress responses. In addition, the transcriptional changes upon acid addition indicated remodeling of the cell wall and central carbon metabolism. The overall trend of changes was similar for the pH-shift experiment and the pH 6 control. However, the changes in the pH 6 control were much weaker and occurred 2.5 h later than in the pH-shift experiment. Thus, the reaction to the steep pH decrease was an immediate response within the normal repertoire of adaptation shown in later stages of fermentation at pH 6. Artificially preventing the yeast from acidifying the medium may be considered physiologically stressful under the tested conditions.</description><subject>ACIDIFICACION</subject><subject>ACIDIFICATION</subject><subject>Adaptation, Biological - genetics</subject><subject>Biomedical and Life Sciences</subject><subject>Cell Wall - genetics</subject><subject>Cell Wall - metabolism</subject><subject>Citric Acid Cycle - genetics</subject><subject>Down-Regulation</subject><subject>Electron Transport Chain Complex Proteins - biosynthesis</subject><subject>Electron Transport Chain Complex Proteins - genetics</subject><subject>Enzymes</subject><subject>FERMENTACION</subject><subject>FERMENTATION</subject><subject>Fermentation - genetics</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation, Fungal</subject><subject>Glucose</subject><subject>Glucose - genetics</subject><subject>Glucose - metabolism</subject><subject>Hydrogen-Ion Concentration</subject><subject>Life Sciences</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Microbiology</subject><subject>Mitochondrial Proteins - biosynthesis</subject><subject>Mitochondrial Proteins - genetics</subject><subject>pyruvate decarboxylase</subject><subject>Pyruvate Decarboxylase - metabolism</subject><subject>SACCHAROMYCES CEREVISIAE</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - growth &amp; development</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>stress response</subject><subject>Sulfuric acid</subject><subject>Yeast</subject><subject>Yeasts</subject><subject>생물학</subject><issn>1225-8873</issn><issn>1976-3794</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkU1rGzEQhkVpaD7aH9BDy5JD6GXb0ddKezShHyGBgpuehaQduUrslSutC_n3kbuGQA_NaQTzzDtoHkLeUvhIAdSnQhlTsgXQLdBOtewFOaG96lquevGyvhmTrdaKH5PTUu4AOsoFe0WOac9YL7Q8IYsllm0aCzYpND-s979sTpsHj6XxmPFPLNFiM6WmTBlLaUNGbKyPQwzR2ymm8TU5CnZd8M2hnpGfXz7fXn5rb75_vbpc3LReSDm1mjE-oBZac8G9cigHK6T2TAVUjjPhtAsA1Kng-SAkhk5QzVwnuXOWaX5GPsy5Yw7m3keTbPxbV8ncZ7NY3l4ZTZVUtKIXM7rN6fcOy2Q2sXhcr-2IaVdM1_VCgFTPgozSelfJKnj-D3iXdnms_zX1kiBAS6gQnSGfUykZg9nmuLH5wVAwe2FmFmaqMLMXZvbB7w_BO7fB4WniYKgCbAZKbY0rzE-b_5f6bh4KNhm7yrGY6yUD6AFEp3r-CNFzp3E</recordid><startdate>20090201</startdate><enddate>20090201</enddate><creator>Chen, Allen Kuan-Liang (University of New South Wales, Sydney, Australia)</creator><creator>Gelling, Cristy (University of New South Wales, Sydney, Australia)</creator><creator>Rogers, Peter L. (University of New South Wales, Sydney, Australia)</creator><creator>Dawes, Ian W. (University of New South Wales, Sydney, Australia)</creator><creator>Rosche, Bettina (University of New South Wales, Sydney, Australia), E-mail: b.rosche@unsw.edu.au</creator><general>The Microbiological Society of Korea</general><general>Springer Nature B.V</general><general>한국미생물학회</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7TM</scope><scope>7TN</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>H95</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7QO</scope><scope>7X8</scope><scope>ACYCR</scope></search><sort><creationdate>20090201</creationdate><title>Response of Saccharomyces cerevisiae to stress-free acidification</title><author>Chen, Allen Kuan-Liang (University of New South Wales, Sydney, Australia) ; Gelling, Cristy (University of New South Wales, Sydney, Australia) ; Rogers, Peter L. (University of New South Wales, Sydney, Australia) ; Dawes, Ian W. (University of New South Wales, Sydney, Australia) ; Rosche, Bettina (University of New South Wales, Sydney, Australia), E-mail: b.rosche@unsw.edu.au</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-8223de8488343c7be5da458c27fe7b324b8bf001b7fc3d45ef64182b653bba283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>ACIDIFICACION</topic><topic>ACIDIFICATION</topic><topic>Adaptation, Biological - genetics</topic><topic>Biomedical and Life Sciences</topic><topic>Cell Wall - genetics</topic><topic>Cell Wall - metabolism</topic><topic>Citric Acid Cycle - genetics</topic><topic>Down-Regulation</topic><topic>Electron Transport Chain Complex Proteins - biosynthesis</topic><topic>Electron Transport Chain Complex Proteins - genetics</topic><topic>Enzymes</topic><topic>FERMENTACION</topic><topic>FERMENTATION</topic><topic>Fermentation - genetics</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation, Fungal</topic><topic>Glucose</topic><topic>Glucose - genetics</topic><topic>Glucose - metabolism</topic><topic>Hydrogen-Ion Concentration</topic><topic>Life Sciences</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Microbiology</topic><topic>Mitochondrial Proteins - biosynthesis</topic><topic>Mitochondrial Proteins - genetics</topic><topic>pyruvate decarboxylase</topic><topic>Pyruvate Decarboxylase - metabolism</topic><topic>SACCHAROMYCES CEREVISIAE</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - growth &amp; development</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>stress response</topic><topic>Sulfuric acid</topic><topic>Yeast</topic><topic>Yeasts</topic><topic>생물학</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Allen Kuan-Liang (University of New South Wales, Sydney, Australia)</creatorcontrib><creatorcontrib>Gelling, Cristy (University of New South Wales, Sydney, Australia)</creatorcontrib><creatorcontrib>Rogers, Peter L. (University of New South Wales, Sydney, Australia)</creatorcontrib><creatorcontrib>Dawes, Ian W. (University of New South Wales, Sydney, Australia)</creatorcontrib><creatorcontrib>Rosche, Bettina (University of New South Wales, Sydney, Australia), E-mail: b.rosche@unsw.edu.au</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Biotechnology Research Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Korean Citation Index (Open Access)</collection><jtitle>The journal of microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Allen Kuan-Liang (University of New South Wales, Sydney, Australia)</au><au>Gelling, Cristy (University of New South Wales, Sydney, Australia)</au><au>Rogers, Peter L. (University of New South Wales, Sydney, Australia)</au><au>Dawes, Ian W. (University of New South Wales, Sydney, Australia)</au><au>Rosche, Bettina (University of New South Wales, Sydney, Australia), E-mail: b.rosche@unsw.edu.au</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Response of Saccharomyces cerevisiae to stress-free acidification</atitle><jtitle>The journal of microbiology</jtitle><stitle>J Microbiol</stitle><addtitle>J Microbiol</addtitle><date>2009-02-01</date><risdate>2009</risdate><volume>47</volume><issue>1</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>1225-8873</issn><eissn>1976-3794</eissn><abstract>Genome-wide transcriptional analysis of a Saccharomyces cerevisiae batch culture revealed that more than 829 genes were regulated in response to an environmental shift from pH 6 to pH 3 by added sulfuric acid. This shift in pH was not detrimental to the rate of growth compared to a control culture that was maintained at pH 6 and the transcriptional changes most strikingly implicated not up- but down-regulation of stress responses. In addition, the transcriptional changes upon acid addition indicated remodeling of the cell wall and central carbon metabolism. The overall trend of changes was similar for the pH-shift experiment and the pH 6 control. However, the changes in the pH 6 control were much weaker and occurred 2.5 h later than in the pH-shift experiment. Thus, the reaction to the steep pH decrease was an immediate response within the normal repertoire of adaptation shown in later stages of fermentation at pH 6. Artificially preventing the yeast from acidifying the medium may be considered physiologically stressful under the tested conditions.</abstract><cop>Heidelberg</cop><pub>The Microbiological Society of Korea</pub><pmid>19229485</pmid><doi>10.1007/s12275-008-0167-2</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1225-8873
ispartof The Journal of Microbiology, 2009, 47(1), , pp.1-8
issn 1225-8873
1976-3794
language eng
recordid cdi_nrf_kci_oai_kci_go_kr_ARTI_817571
source Springer Nature
subjects ACIDIFICACION
ACIDIFICATION
Adaptation, Biological - genetics
Biomedical and Life Sciences
Cell Wall - genetics
Cell Wall - metabolism
Citric Acid Cycle - genetics
Down-Regulation
Electron Transport Chain Complex Proteins - biosynthesis
Electron Transport Chain Complex Proteins - genetics
Enzymes
FERMENTACION
FERMENTATION
Fermentation - genetics
Gene Expression Profiling
Gene Expression Regulation, Fungal
Glucose
Glucose - genetics
Glucose - metabolism
Hydrogen-Ion Concentration
Life Sciences
Metabolism
Metabolites
Microbiology
Mitochondrial Proteins - biosynthesis
Mitochondrial Proteins - genetics
pyruvate decarboxylase
Pyruvate Decarboxylase - metabolism
SACCHAROMYCES CEREVISIAE
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - growth & development
Saccharomyces cerevisiae - metabolism
stress response
Sulfuric acid
Yeast
Yeasts
생물학
title Response of Saccharomyces cerevisiae to stress-free acidification
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T00%3A07%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_nrf_k&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Response%20of%20Saccharomyces%20cerevisiae%20to%20stress-free%20acidification&rft.jtitle=The%20journal%20of%20microbiology&rft.au=Chen,%20Allen%20Kuan-Liang%20(University%20of%20New%20South%20Wales,%20Sydney,%20Australia)&rft.date=2009-02-01&rft.volume=47&rft.issue=1&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=1225-8873&rft.eissn=1976-3794&rft_id=info:doi/10.1007/s12275-008-0167-2&rft_dat=%3Cproquest_nrf_k%3E1894261671%3C/proquest_nrf_k%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c455t-8223de8488343c7be5da458c27fe7b324b8bf001b7fc3d45ef64182b653bba283%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=229040850&rft_id=info:pmid/19229485&rfr_iscdi=true