Loading…

A novel data-driven rollover risk assessment for articulated steering vehicles using RNN

Articulated steering vehicles have outstanding capability operating but suffer from frequent rollover accidents due to their complicated structure. It is necessary to accurately detect their rollover risk for drivers to take action in time. Their variable structure and the variable center of mass ex...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mechanical science and technology 2020, 34(5), , pp.2161-2170
Main Authors: Chen, Xuanwei, Chen, Wei, Hou, Liang, Hu, Huosheng, Bu, Xiangjian, Zhu, Qingyuan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c393t-d1bf8f81a7175df37c8ea87308a0a9741585c19855294aef636013227599cfe73
cites cdi_FETCH-LOGICAL-c393t-d1bf8f81a7175df37c8ea87308a0a9741585c19855294aef636013227599cfe73
container_end_page 2170
container_issue 5
container_start_page 2161
container_title Journal of mechanical science and technology
container_volume 34
creator Chen, Xuanwei
Chen, Wei
Hou, Liang
Hu, Huosheng
Bu, Xiangjian
Zhu, Qingyuan
description Articulated steering vehicles have outstanding capability operating but suffer from frequent rollover accidents due to their complicated structure. It is necessary to accurately detect their rollover risk for drivers to take action in time. Their variable structure and the variable center of mass exhibit nonlinear time-variant behavior and increase the difficulty of dynamic modelling and lateral stability description. This paper proposes a novel data-driven modelling methodology for lateral stability description of articulated steering vehicles. The running data is first collected based on the typical operations that prone to rollover and then classified into two types: Safety and danger. The data quality is further improved by wavelet transformation. Finally, an RNN model is built on the data. The experimental results show that the output of the RNN model can accurately quantify lateral stability of the vehicle, i.e., the risk of rollover, when it is turning and crossing uneven surfaces or obstacles.
doi_str_mv 10.1007/s12206-020-0437-4
format article
fullrecord <record><control><sourceid>proquest_nrf_k</sourceid><recordid>TN_cdi_nrf_kci_oai_kci_go_kr_ARTI_8444152</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2401260397</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-d1bf8f81a7175df37c8ea87308a0a9741585c19855294aef636013227599cfe73</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKs_wF3AlYtoXjNJlqX4KEiFUqG7EDNJTTud1GRa8N874wiuXJ17L-ccLh8A1wTfEYzFfSaU4hJhihHmTCB-AkZEiRIxSflpNwsmEVd8dQ4uct5gXFJOyAisJrCJR1fDyrQGVSkcXQNTrOvumGAKeQtNzi7nnWta6GOCJrXBHmrTugrm1rkUmjU8uo9ga5fhIffrYj6_BGfe1Nld_eoYvD0-LKfP6OX1aTadvCDLFGtRRd699JIYQURReSasdEYKhqXBRglOCllYomRRUMWN8yUrMWGUikIp651gY3A79DbJ660NOprwo-uot0lPFsuZlpx3RbTz3gzefYqfB5dbvYmH1HTvacoxoSVmqm8kg8ummHNyXu9T2Jn0pQnWPWw9wNYdbN3D1rzL0CGT9z0Pl_6a_w99A2xggJA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2401260397</pqid></control><display><type>article</type><title>A novel data-driven rollover risk assessment for articulated steering vehicles using RNN</title><source>Springer Nature</source><creator>Chen, Xuanwei ; Chen, Wei ; Hou, Liang ; Hu, Huosheng ; Bu, Xiangjian ; Zhu, Qingyuan</creator><creatorcontrib>Chen, Xuanwei ; Chen, Wei ; Hou, Liang ; Hu, Huosheng ; Bu, Xiangjian ; Zhu, Qingyuan</creatorcontrib><description>Articulated steering vehicles have outstanding capability operating but suffer from frequent rollover accidents due to their complicated structure. It is necessary to accurately detect their rollover risk for drivers to take action in time. Their variable structure and the variable center of mass exhibit nonlinear time-variant behavior and increase the difficulty of dynamic modelling and lateral stability description. This paper proposes a novel data-driven modelling methodology for lateral stability description of articulated steering vehicles. The running data is first collected based on the typical operations that prone to rollover and then classified into two types: Safety and danger. The data quality is further improved by wavelet transformation. Finally, an RNN model is built on the data. The experimental results show that the output of the RNN model can accurately quantify lateral stability of the vehicle, i.e., the risk of rollover, when it is turning and crossing uneven surfaces or obstacles.</description><identifier>ISSN: 1738-494X</identifier><identifier>EISSN: 1976-3824</identifier><identifier>DOI: 10.1007/s12206-020-0437-4</identifier><language>eng</language><publisher>Seoul: Korean Society of Mechanical Engineers</publisher><subject>Accidents ; Control ; Dynamic models ; Dynamic stability ; Dynamical Systems ; Engineering ; Industrial and Production Engineering ; Lateral stability ; Mechanical Engineering ; Modelling ; Original Article ; Risk assessment ; Rollover ; Steering ; Vehicles ; Vibration ; Wavelet transforms ; 기계공학</subject><ispartof>Journal of Mechanical Science and Technology, 2020, 34(5), , pp.2161-2170</ispartof><rights>The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-d1bf8f81a7175df37c8ea87308a0a9741585c19855294aef636013227599cfe73</citedby><cites>FETCH-LOGICAL-c393t-d1bf8f81a7175df37c8ea87308a0a9741585c19855294aef636013227599cfe73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002581184$$DAccess content in National Research Foundation of Korea (NRF)$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Xuanwei</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Hou, Liang</creatorcontrib><creatorcontrib>Hu, Huosheng</creatorcontrib><creatorcontrib>Bu, Xiangjian</creatorcontrib><creatorcontrib>Zhu, Qingyuan</creatorcontrib><title>A novel data-driven rollover risk assessment for articulated steering vehicles using RNN</title><title>Journal of mechanical science and technology</title><addtitle>J Mech Sci Technol</addtitle><description>Articulated steering vehicles have outstanding capability operating but suffer from frequent rollover accidents due to their complicated structure. It is necessary to accurately detect their rollover risk for drivers to take action in time. Their variable structure and the variable center of mass exhibit nonlinear time-variant behavior and increase the difficulty of dynamic modelling and lateral stability description. This paper proposes a novel data-driven modelling methodology for lateral stability description of articulated steering vehicles. The running data is first collected based on the typical operations that prone to rollover and then classified into two types: Safety and danger. The data quality is further improved by wavelet transformation. Finally, an RNN model is built on the data. The experimental results show that the output of the RNN model can accurately quantify lateral stability of the vehicle, i.e., the risk of rollover, when it is turning and crossing uneven surfaces or obstacles.</description><subject>Accidents</subject><subject>Control</subject><subject>Dynamic models</subject><subject>Dynamic stability</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Industrial and Production Engineering</subject><subject>Lateral stability</subject><subject>Mechanical Engineering</subject><subject>Modelling</subject><subject>Original Article</subject><subject>Risk assessment</subject><subject>Rollover</subject><subject>Steering</subject><subject>Vehicles</subject><subject>Vibration</subject><subject>Wavelet transforms</subject><subject>기계공학</subject><issn>1738-494X</issn><issn>1976-3824</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEUhYMoWKs_wF3AlYtoXjNJlqX4KEiFUqG7EDNJTTud1GRa8N874wiuXJ17L-ccLh8A1wTfEYzFfSaU4hJhihHmTCB-AkZEiRIxSflpNwsmEVd8dQ4uct5gXFJOyAisJrCJR1fDyrQGVSkcXQNTrOvumGAKeQtNzi7nnWta6GOCJrXBHmrTugrm1rkUmjU8uo9ga5fhIffrYj6_BGfe1Nld_eoYvD0-LKfP6OX1aTadvCDLFGtRRd699JIYQURReSasdEYKhqXBRglOCllYomRRUMWN8yUrMWGUikIp651gY3A79DbJ660NOprwo-uot0lPFsuZlpx3RbTz3gzefYqfB5dbvYmH1HTvacoxoSVmqm8kg8ummHNyXu9T2Jn0pQnWPWw9wNYdbN3D1rzL0CGT9z0Pl_6a_w99A2xggJA</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Chen, Xuanwei</creator><creator>Chen, Wei</creator><creator>Hou, Liang</creator><creator>Hu, Huosheng</creator><creator>Bu, Xiangjian</creator><creator>Zhu, Qingyuan</creator><general>Korean Society of Mechanical Engineers</general><general>Springer Nature B.V</general><general>대한기계학회</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>ACYCR</scope></search><sort><creationdate>20200501</creationdate><title>A novel data-driven rollover risk assessment for articulated steering vehicles using RNN</title><author>Chen, Xuanwei ; Chen, Wei ; Hou, Liang ; Hu, Huosheng ; Bu, Xiangjian ; Zhu, Qingyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-d1bf8f81a7175df37c8ea87308a0a9741585c19855294aef636013227599cfe73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accidents</topic><topic>Control</topic><topic>Dynamic models</topic><topic>Dynamic stability</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Industrial and Production Engineering</topic><topic>Lateral stability</topic><topic>Mechanical Engineering</topic><topic>Modelling</topic><topic>Original Article</topic><topic>Risk assessment</topic><topic>Rollover</topic><topic>Steering</topic><topic>Vehicles</topic><topic>Vibration</topic><topic>Wavelet transforms</topic><topic>기계공학</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Xuanwei</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Hou, Liang</creatorcontrib><creatorcontrib>Hu, Huosheng</creatorcontrib><creatorcontrib>Bu, Xiangjian</creatorcontrib><creatorcontrib>Zhu, Qingyuan</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Korean Citation Index</collection><jtitle>Journal of mechanical science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Xuanwei</au><au>Chen, Wei</au><au>Hou, Liang</au><au>Hu, Huosheng</au><au>Bu, Xiangjian</au><au>Zhu, Qingyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel data-driven rollover risk assessment for articulated steering vehicles using RNN</atitle><jtitle>Journal of mechanical science and technology</jtitle><stitle>J Mech Sci Technol</stitle><date>2020-05-01</date><risdate>2020</risdate><volume>34</volume><issue>5</issue><spage>2161</spage><epage>2170</epage><pages>2161-2170</pages><issn>1738-494X</issn><eissn>1976-3824</eissn><abstract>Articulated steering vehicles have outstanding capability operating but suffer from frequent rollover accidents due to their complicated structure. It is necessary to accurately detect their rollover risk for drivers to take action in time. Their variable structure and the variable center of mass exhibit nonlinear time-variant behavior and increase the difficulty of dynamic modelling and lateral stability description. This paper proposes a novel data-driven modelling methodology for lateral stability description of articulated steering vehicles. The running data is first collected based on the typical operations that prone to rollover and then classified into two types: Safety and danger. The data quality is further improved by wavelet transformation. Finally, an RNN model is built on the data. The experimental results show that the output of the RNN model can accurately quantify lateral stability of the vehicle, i.e., the risk of rollover, when it is turning and crossing uneven surfaces or obstacles.</abstract><cop>Seoul</cop><pub>Korean Society of Mechanical Engineers</pub><doi>10.1007/s12206-020-0437-4</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1738-494X
ispartof Journal of Mechanical Science and Technology, 2020, 34(5), , pp.2161-2170
issn 1738-494X
1976-3824
language eng
recordid cdi_nrf_kci_oai_kci_go_kr_ARTI_8444152
source Springer Nature
subjects Accidents
Control
Dynamic models
Dynamic stability
Dynamical Systems
Engineering
Industrial and Production Engineering
Lateral stability
Mechanical Engineering
Modelling
Original Article
Risk assessment
Rollover
Steering
Vehicles
Vibration
Wavelet transforms
기계공학
title A novel data-driven rollover risk assessment for articulated steering vehicles using RNN
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T02%3A04%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_nrf_k&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20data-driven%20rollover%20risk%20assessment%20for%20articulated%20steering%20vehicles%20using%20RNN&rft.jtitle=Journal%20of%20mechanical%20science%20and%20technology&rft.au=Chen,%20Xuanwei&rft.date=2020-05-01&rft.volume=34&rft.issue=5&rft.spage=2161&rft.epage=2170&rft.pages=2161-2170&rft.issn=1738-494X&rft.eissn=1976-3824&rft_id=info:doi/10.1007/s12206-020-0437-4&rft_dat=%3Cproquest_nrf_k%3E2401260397%3C/proquest_nrf_k%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c393t-d1bf8f81a7175df37c8ea87308a0a9741585c19855294aef636013227599cfe73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2401260397&rft_id=info:pmid/&rfr_iscdi=true