Loading…
A novel data-driven rollover risk assessment for articulated steering vehicles using RNN
Articulated steering vehicles have outstanding capability operating but suffer from frequent rollover accidents due to their complicated structure. It is necessary to accurately detect their rollover risk for drivers to take action in time. Their variable structure and the variable center of mass ex...
Saved in:
Published in: | Journal of mechanical science and technology 2020, 34(5), , pp.2161-2170 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c393t-d1bf8f81a7175df37c8ea87308a0a9741585c19855294aef636013227599cfe73 |
---|---|
cites | cdi_FETCH-LOGICAL-c393t-d1bf8f81a7175df37c8ea87308a0a9741585c19855294aef636013227599cfe73 |
container_end_page | 2170 |
container_issue | 5 |
container_start_page | 2161 |
container_title | Journal of mechanical science and technology |
container_volume | 34 |
creator | Chen, Xuanwei Chen, Wei Hou, Liang Hu, Huosheng Bu, Xiangjian Zhu, Qingyuan |
description | Articulated steering vehicles have outstanding capability operating but suffer from frequent rollover accidents due to their complicated structure. It is necessary to accurately detect their rollover risk for drivers to take action in time. Their variable structure and the variable center of mass exhibit nonlinear time-variant behavior and increase the difficulty of dynamic modelling and lateral stability description. This paper proposes a novel data-driven modelling methodology for lateral stability description of articulated steering vehicles. The running data is first collected based on the typical operations that prone to rollover and then classified into two types: Safety and danger. The data quality is further improved by wavelet transformation. Finally, an RNN model is built on the data. The experimental results show that the output of the RNN model can accurately quantify lateral stability of the vehicle, i.e., the risk of rollover, when it is turning and crossing uneven surfaces or obstacles. |
doi_str_mv | 10.1007/s12206-020-0437-4 |
format | article |
fullrecord | <record><control><sourceid>proquest_nrf_k</sourceid><recordid>TN_cdi_nrf_kci_oai_kci_go_kr_ARTI_8444152</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2401260397</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-d1bf8f81a7175df37c8ea87308a0a9741585c19855294aef636013227599cfe73</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKs_wF3AlYtoXjNJlqX4KEiFUqG7EDNJTTud1GRa8N874wiuXJ17L-ccLh8A1wTfEYzFfSaU4hJhihHmTCB-AkZEiRIxSflpNwsmEVd8dQ4uct5gXFJOyAisJrCJR1fDyrQGVSkcXQNTrOvumGAKeQtNzi7nnWta6GOCJrXBHmrTugrm1rkUmjU8uo9ga5fhIffrYj6_BGfe1Nld_eoYvD0-LKfP6OX1aTadvCDLFGtRRd699JIYQURReSasdEYKhqXBRglOCllYomRRUMWN8yUrMWGUikIp651gY3A79DbJ660NOprwo-uot0lPFsuZlpx3RbTz3gzefYqfB5dbvYmH1HTvacoxoSVmqm8kg8ummHNyXu9T2Jn0pQnWPWw9wNYdbN3D1rzL0CGT9z0Pl_6a_w99A2xggJA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2401260397</pqid></control><display><type>article</type><title>A novel data-driven rollover risk assessment for articulated steering vehicles using RNN</title><source>Springer Nature</source><creator>Chen, Xuanwei ; Chen, Wei ; Hou, Liang ; Hu, Huosheng ; Bu, Xiangjian ; Zhu, Qingyuan</creator><creatorcontrib>Chen, Xuanwei ; Chen, Wei ; Hou, Liang ; Hu, Huosheng ; Bu, Xiangjian ; Zhu, Qingyuan</creatorcontrib><description>Articulated steering vehicles have outstanding capability operating but suffer from frequent rollover accidents due to their complicated structure. It is necessary to accurately detect their rollover risk for drivers to take action in time. Their variable structure and the variable center of mass exhibit nonlinear time-variant behavior and increase the difficulty of dynamic modelling and lateral stability description. This paper proposes a novel data-driven modelling methodology for lateral stability description of articulated steering vehicles. The running data is first collected based on the typical operations that prone to rollover and then classified into two types: Safety and danger. The data quality is further improved by wavelet transformation. Finally, an RNN model is built on the data. The experimental results show that the output of the RNN model can accurately quantify lateral stability of the vehicle, i.e., the risk of rollover, when it is turning and crossing uneven surfaces or obstacles.</description><identifier>ISSN: 1738-494X</identifier><identifier>EISSN: 1976-3824</identifier><identifier>DOI: 10.1007/s12206-020-0437-4</identifier><language>eng</language><publisher>Seoul: Korean Society of Mechanical Engineers</publisher><subject>Accidents ; Control ; Dynamic models ; Dynamic stability ; Dynamical Systems ; Engineering ; Industrial and Production Engineering ; Lateral stability ; Mechanical Engineering ; Modelling ; Original Article ; Risk assessment ; Rollover ; Steering ; Vehicles ; Vibration ; Wavelet transforms ; 기계공학</subject><ispartof>Journal of Mechanical Science and Technology, 2020, 34(5), , pp.2161-2170</ispartof><rights>The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-d1bf8f81a7175df37c8ea87308a0a9741585c19855294aef636013227599cfe73</citedby><cites>FETCH-LOGICAL-c393t-d1bf8f81a7175df37c8ea87308a0a9741585c19855294aef636013227599cfe73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002581184$$DAccess content in National Research Foundation of Korea (NRF)$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Xuanwei</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Hou, Liang</creatorcontrib><creatorcontrib>Hu, Huosheng</creatorcontrib><creatorcontrib>Bu, Xiangjian</creatorcontrib><creatorcontrib>Zhu, Qingyuan</creatorcontrib><title>A novel data-driven rollover risk assessment for articulated steering vehicles using RNN</title><title>Journal of mechanical science and technology</title><addtitle>J Mech Sci Technol</addtitle><description>Articulated steering vehicles have outstanding capability operating but suffer from frequent rollover accidents due to their complicated structure. It is necessary to accurately detect their rollover risk for drivers to take action in time. Their variable structure and the variable center of mass exhibit nonlinear time-variant behavior and increase the difficulty of dynamic modelling and lateral stability description. This paper proposes a novel data-driven modelling methodology for lateral stability description of articulated steering vehicles. The running data is first collected based on the typical operations that prone to rollover and then classified into two types: Safety and danger. The data quality is further improved by wavelet transformation. Finally, an RNN model is built on the data. The experimental results show that the output of the RNN model can accurately quantify lateral stability of the vehicle, i.e., the risk of rollover, when it is turning and crossing uneven surfaces or obstacles.</description><subject>Accidents</subject><subject>Control</subject><subject>Dynamic models</subject><subject>Dynamic stability</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Industrial and Production Engineering</subject><subject>Lateral stability</subject><subject>Mechanical Engineering</subject><subject>Modelling</subject><subject>Original Article</subject><subject>Risk assessment</subject><subject>Rollover</subject><subject>Steering</subject><subject>Vehicles</subject><subject>Vibration</subject><subject>Wavelet transforms</subject><subject>기계공학</subject><issn>1738-494X</issn><issn>1976-3824</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEUhYMoWKs_wF3AlYtoXjNJlqX4KEiFUqG7EDNJTTud1GRa8N874wiuXJ17L-ccLh8A1wTfEYzFfSaU4hJhihHmTCB-AkZEiRIxSflpNwsmEVd8dQ4uct5gXFJOyAisJrCJR1fDyrQGVSkcXQNTrOvumGAKeQtNzi7nnWta6GOCJrXBHmrTugrm1rkUmjU8uo9ga5fhIffrYj6_BGfe1Nld_eoYvD0-LKfP6OX1aTadvCDLFGtRRd699JIYQURReSasdEYKhqXBRglOCllYomRRUMWN8yUrMWGUikIp651gY3A79DbJ660NOprwo-uot0lPFsuZlpx3RbTz3gzefYqfB5dbvYmH1HTvacoxoSVmqm8kg8ummHNyXu9T2Jn0pQnWPWw9wNYdbN3D1rzL0CGT9z0Pl_6a_w99A2xggJA</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Chen, Xuanwei</creator><creator>Chen, Wei</creator><creator>Hou, Liang</creator><creator>Hu, Huosheng</creator><creator>Bu, Xiangjian</creator><creator>Zhu, Qingyuan</creator><general>Korean Society of Mechanical Engineers</general><general>Springer Nature B.V</general><general>대한기계학회</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>ACYCR</scope></search><sort><creationdate>20200501</creationdate><title>A novel data-driven rollover risk assessment for articulated steering vehicles using RNN</title><author>Chen, Xuanwei ; Chen, Wei ; Hou, Liang ; Hu, Huosheng ; Bu, Xiangjian ; Zhu, Qingyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-d1bf8f81a7175df37c8ea87308a0a9741585c19855294aef636013227599cfe73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accidents</topic><topic>Control</topic><topic>Dynamic models</topic><topic>Dynamic stability</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Industrial and Production Engineering</topic><topic>Lateral stability</topic><topic>Mechanical Engineering</topic><topic>Modelling</topic><topic>Original Article</topic><topic>Risk assessment</topic><topic>Rollover</topic><topic>Steering</topic><topic>Vehicles</topic><topic>Vibration</topic><topic>Wavelet transforms</topic><topic>기계공학</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Xuanwei</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Hou, Liang</creatorcontrib><creatorcontrib>Hu, Huosheng</creatorcontrib><creatorcontrib>Bu, Xiangjian</creatorcontrib><creatorcontrib>Zhu, Qingyuan</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Korean Citation Index</collection><jtitle>Journal of mechanical science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Xuanwei</au><au>Chen, Wei</au><au>Hou, Liang</au><au>Hu, Huosheng</au><au>Bu, Xiangjian</au><au>Zhu, Qingyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel data-driven rollover risk assessment for articulated steering vehicles using RNN</atitle><jtitle>Journal of mechanical science and technology</jtitle><stitle>J Mech Sci Technol</stitle><date>2020-05-01</date><risdate>2020</risdate><volume>34</volume><issue>5</issue><spage>2161</spage><epage>2170</epage><pages>2161-2170</pages><issn>1738-494X</issn><eissn>1976-3824</eissn><abstract>Articulated steering vehicles have outstanding capability operating but suffer from frequent rollover accidents due to their complicated structure. It is necessary to accurately detect their rollover risk for drivers to take action in time. Their variable structure and the variable center of mass exhibit nonlinear time-variant behavior and increase the difficulty of dynamic modelling and lateral stability description. This paper proposes a novel data-driven modelling methodology for lateral stability description of articulated steering vehicles. The running data is first collected based on the typical operations that prone to rollover and then classified into two types: Safety and danger. The data quality is further improved by wavelet transformation. Finally, an RNN model is built on the data. The experimental results show that the output of the RNN model can accurately quantify lateral stability of the vehicle, i.e., the risk of rollover, when it is turning and crossing uneven surfaces or obstacles.</abstract><cop>Seoul</cop><pub>Korean Society of Mechanical Engineers</pub><doi>10.1007/s12206-020-0437-4</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1738-494X |
ispartof | Journal of Mechanical Science and Technology, 2020, 34(5), , pp.2161-2170 |
issn | 1738-494X 1976-3824 |
language | eng |
recordid | cdi_nrf_kci_oai_kci_go_kr_ARTI_8444152 |
source | Springer Nature |
subjects | Accidents Control Dynamic models Dynamic stability Dynamical Systems Engineering Industrial and Production Engineering Lateral stability Mechanical Engineering Modelling Original Article Risk assessment Rollover Steering Vehicles Vibration Wavelet transforms 기계공학 |
title | A novel data-driven rollover risk assessment for articulated steering vehicles using RNN |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T02%3A04%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_nrf_k&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20data-driven%20rollover%20risk%20assessment%20for%20articulated%20steering%20vehicles%20using%20RNN&rft.jtitle=Journal%20of%20mechanical%20science%20and%20technology&rft.au=Chen,%20Xuanwei&rft.date=2020-05-01&rft.volume=34&rft.issue=5&rft.spage=2161&rft.epage=2170&rft.pages=2161-2170&rft.issn=1738-494X&rft.eissn=1976-3824&rft_id=info:doi/10.1007/s12206-020-0437-4&rft_dat=%3Cproquest_nrf_k%3E2401260397%3C/proquest_nrf_k%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c393t-d1bf8f81a7175df37c8ea87308a0a9741585c19855294aef636013227599cfe73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2401260397&rft_id=info:pmid/&rfr_iscdi=true |