Loading…
BIN2/DWF12 Antagonistically Transduces Brassinosteroid and Auxin Signals in the Roots of Arabidopsis
Plant growth-stimulating hormones brassinosteroids (BRs) function via interactions with other hormones. However, the mechanism of these interactions remains to be elucidated. The unique phenotypes of brassinosteroid insensitive2/dwarf12-D (bin2/dwf12-D) mutants, such as twisted inflorescences and le...
Saved in:
Published in: | Journal of plant biology = Singmul Hakhoe chi 2011, 54(2), , pp.126-134 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Plant growth-stimulating hormones brassinosteroids (BRs) function via interactions with other hormones. However, the mechanism of these interactions remains to be elucidated. The unique phenotypes of brassinosteroid insensitive2/dwarf12-D (bin2/dwf12-D) mutants, such as twisted inflorescences and leaves, suggested that BIN2, a negative regulator of BR signaling, may be involved in auxin signaling. Furthermore, previously, we showed that auxin stimulates DWF4 expression. To determine the possible role of BIN2/DWF12 in Auxin signaling, we measured DWARF4pro:GUS activity through both GUS histochemical staining and in vivo GUS assay. We found that the GUS activity in the bin2/dwarf12-1D background dramatically increased relative to control. In addition, the number of lateral roots (LR) in bin2/dwf12-1D was greater than wild type, and the optimal concentration for auxin-mediated lateral root induction was lower in bin2/dwf12-1D; these findings suggest that BIN2 plays a positive role in auxin signaling. In contrast, ABA repressed both DWF4pro:GUS expression and lateral root development. However, the degree of repression was lower in bin2/dwf12-1D background, suggesting that BIN2 plays a role in ABA-mediated DWF4pro:GUS expression and subsequently in lateral root development, too. Therefore, it is likely that BIN2 plays a role of signal integrator for multiple hormones, such as BRs, auxin, and ABA. |
---|---|
ISSN: | 1226-9239 1867-0725 |
DOI: | 10.1007/s12374-010-9138-3 |