Loading…

Transformation Approach to Model Online Gaming Traffic

In this paper, we propose a transformation scheme used to analyze online gaming traffic properties and develop a traffic model. We analyze the packet size and the inter departure time distributions of a popular first‐person shooter game (Left 4 Dead) and a massively multiplayer online role‐playing g...

Full description

Saved in:
Bibliographic Details
Published in:ETRI journal 2011, 33(2), , pp.219-229
Main Authors: Shin, KwangSik, Kim, Jinhyuk, Sohn, Kangmin, Park, Chang Joon, Choi, SangBang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3299-6a624cf4fa87459dbbedeb7a1509a4c2d801eab81ddb54df1084e0ea081cda413
cites cdi_FETCH-LOGICAL-c3299-6a624cf4fa87459dbbedeb7a1509a4c2d801eab81ddb54df1084e0ea081cda413
container_end_page 229
container_issue 2
container_start_page 219
container_title ETRI journal
container_volume 33
creator Shin, KwangSik
Kim, Jinhyuk
Sohn, Kangmin
Park, Chang Joon
Choi, SangBang
description In this paper, we propose a transformation scheme used to analyze online gaming traffic properties and develop a traffic model. We analyze the packet size and the inter departure time distributions of a popular first‐person shooter game (Left 4 Dead) and a massively multiplayer online role‐playing game (World of Warcraft) in order to compare them to the existing scheme. Recent online gaming traffic is erratically distributed, so it is very difficult to analyze. Therefore, our research focuses on a transformation scheme to obtain new smooth patterns from a messy dataset. It extracts relatively heavy‐weighted density data and then transforms them into a corresponding dataset domain to obtain a simplified graph. We compare the analytical model histogram, the chi‐square statistic, and the quantile‐quantile plot of the proposed scheme to an existing scheme. The results show that the proposed scheme demonstrates a good fit in all parts. The chi‐square statistic of our scheme for the Left 4 Dead packet size distribution is less than one ninth of the existing one when dealing with erratic traffic.
doi_str_mv 10.4218/etrij.11.1510.0087
format article
fullrecord <record><control><sourceid>wiley_nrf_k</sourceid><recordid>TN_cdi_nrf_kci_oai_kci_go_kr_ARTI_917889</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ETR20219</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3299-6a624cf4fa87459dbbedeb7a1509a4c2d801eab81ddb54df1084e0ea081cda413</originalsourceid><addsrcrecordid>eNqNkM1KAzEURoMoWKsv4GqWbqbmJpmZZFlKrUKlUMZ1uJOfmnY6KZmC9O2dtj6Aqw8u59zFIeQZ6EQwkK_umMJ2AjCBYjhRKqsbMmKM87zirLwlI2CsyEtR8nvy0PdbShkVhRyRsk7Y9T6mPR5D7LLp4ZAimu_sGLPPaF2brbo2dC5b4D50m2zAvQ_mkdx5bHv39Ldj8vU2r2fv-XK1-JhNl7nhTKm8xJIJ44VHWYlC2aZx1jUVQkEVCsOspOCwkWBtUwjrgUrhqEMqwVgUwMfk5fq3S17vTNARw2U3Ue-Snq7rD62gklINKLuiJsW-T87rQwp7TCcNVJ8j6UskDaDPkfQ50iDJq_QTWnf6h6Hn9ZpRBor_AudUbOY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Transformation Approach to Model Online Gaming Traffic</title><source>Alma/SFX Local Collection</source><creator>Shin, KwangSik ; Kim, Jinhyuk ; Sohn, Kangmin ; Park, Chang Joon ; Choi, SangBang</creator><creatorcontrib>Shin, KwangSik ; Kim, Jinhyuk ; Sohn, Kangmin ; Park, Chang Joon ; Choi, SangBang</creatorcontrib><description>In this paper, we propose a transformation scheme used to analyze online gaming traffic properties and develop a traffic model. We analyze the packet size and the inter departure time distributions of a popular first‐person shooter game (Left 4 Dead) and a massively multiplayer online role‐playing game (World of Warcraft) in order to compare them to the existing scheme. Recent online gaming traffic is erratically distributed, so it is very difficult to analyze. Therefore, our research focuses on a transformation scheme to obtain new smooth patterns from a messy dataset. It extracts relatively heavy‐weighted density data and then transforms them into a corresponding dataset domain to obtain a simplified graph. We compare the analytical model histogram, the chi‐square statistic, and the quantile‐quantile plot of the proposed scheme to an existing scheme. The results show that the proposed scheme demonstrates a good fit in all parts. The chi‐square statistic of our scheme for the Left 4 Dead packet size distribution is less than one ninth of the existing one when dealing with erratic traffic.</description><identifier>ISSN: 1225-6463</identifier><identifier>EISSN: 2233-7326</identifier><identifier>DOI: 10.4218/etrij.11.1510.0087</identifier><language>eng</language><publisher>한국전자통신연구원</publisher><subject>analytical model ; curve fitting ; Gaming traffic ; traffic analysis ; transformation approach ; 전자/정보통신공학</subject><ispartof>ETRI Journal, 2011, 33(2), , pp.219-229</ispartof><rights>2011 ETRI</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3299-6a624cf4fa87459dbbedeb7a1509a4c2d801eab81ddb54df1084e0ea081cda413</citedby><cites>FETCH-LOGICAL-c3299-6a624cf4fa87459dbbedeb7a1509a4c2d801eab81ddb54df1084e0ea081cda413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001544561$$DAccess content in National Research Foundation of Korea (NRF)$$Hfree_for_read</backlink></links><search><creatorcontrib>Shin, KwangSik</creatorcontrib><creatorcontrib>Kim, Jinhyuk</creatorcontrib><creatorcontrib>Sohn, Kangmin</creatorcontrib><creatorcontrib>Park, Chang Joon</creatorcontrib><creatorcontrib>Choi, SangBang</creatorcontrib><title>Transformation Approach to Model Online Gaming Traffic</title><title>ETRI journal</title><description>In this paper, we propose a transformation scheme used to analyze online gaming traffic properties and develop a traffic model. We analyze the packet size and the inter departure time distributions of a popular first‐person shooter game (Left 4 Dead) and a massively multiplayer online role‐playing game (World of Warcraft) in order to compare them to the existing scheme. Recent online gaming traffic is erratically distributed, so it is very difficult to analyze. Therefore, our research focuses on a transformation scheme to obtain new smooth patterns from a messy dataset. It extracts relatively heavy‐weighted density data and then transforms them into a corresponding dataset domain to obtain a simplified graph. We compare the analytical model histogram, the chi‐square statistic, and the quantile‐quantile plot of the proposed scheme to an existing scheme. The results show that the proposed scheme demonstrates a good fit in all parts. The chi‐square statistic of our scheme for the Left 4 Dead packet size distribution is less than one ninth of the existing one when dealing with erratic traffic.</description><subject>analytical model</subject><subject>curve fitting</subject><subject>Gaming traffic</subject><subject>traffic analysis</subject><subject>transformation approach</subject><subject>전자/정보통신공학</subject><issn>1225-6463</issn><issn>2233-7326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNkM1KAzEURoMoWKsv4GqWbqbmJpmZZFlKrUKlUMZ1uJOfmnY6KZmC9O2dtj6Aqw8u59zFIeQZ6EQwkK_umMJ2AjCBYjhRKqsbMmKM87zirLwlI2CsyEtR8nvy0PdbShkVhRyRsk7Y9T6mPR5D7LLp4ZAimu_sGLPPaF2brbo2dC5b4D50m2zAvQ_mkdx5bHv39Ldj8vU2r2fv-XK1-JhNl7nhTKm8xJIJ44VHWYlC2aZx1jUVQkEVCsOspOCwkWBtUwjrgUrhqEMqwVgUwMfk5fq3S17vTNARw2U3Ue-Snq7rD62gklINKLuiJsW-T87rQwp7TCcNVJ8j6UskDaDPkfQ50iDJq_QTWnf6h6Hn9ZpRBor_AudUbOY</recordid><startdate>201104</startdate><enddate>201104</enddate><creator>Shin, KwangSik</creator><creator>Kim, Jinhyuk</creator><creator>Sohn, Kangmin</creator><creator>Park, Chang Joon</creator><creator>Choi, SangBang</creator><general>한국전자통신연구원</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ACYCR</scope></search><sort><creationdate>201104</creationdate><title>Transformation Approach to Model Online Gaming Traffic</title><author>Shin, KwangSik ; Kim, Jinhyuk ; Sohn, Kangmin ; Park, Chang Joon ; Choi, SangBang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3299-6a624cf4fa87459dbbedeb7a1509a4c2d801eab81ddb54df1084e0ea081cda413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>analytical model</topic><topic>curve fitting</topic><topic>Gaming traffic</topic><topic>traffic analysis</topic><topic>transformation approach</topic><topic>전자/정보통신공학</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shin, KwangSik</creatorcontrib><creatorcontrib>Kim, Jinhyuk</creatorcontrib><creatorcontrib>Sohn, Kangmin</creatorcontrib><creatorcontrib>Park, Chang Joon</creatorcontrib><creatorcontrib>Choi, SangBang</creatorcontrib><collection>CrossRef</collection><collection>Korean Citation Index</collection><jtitle>ETRI journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shin, KwangSik</au><au>Kim, Jinhyuk</au><au>Sohn, Kangmin</au><au>Park, Chang Joon</au><au>Choi, SangBang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transformation Approach to Model Online Gaming Traffic</atitle><jtitle>ETRI journal</jtitle><date>2011-04</date><risdate>2011</risdate><volume>33</volume><issue>2</issue><spage>219</spage><epage>229</epage><pages>219-229</pages><issn>1225-6463</issn><eissn>2233-7326</eissn><abstract>In this paper, we propose a transformation scheme used to analyze online gaming traffic properties and develop a traffic model. We analyze the packet size and the inter departure time distributions of a popular first‐person shooter game (Left 4 Dead) and a massively multiplayer online role‐playing game (World of Warcraft) in order to compare them to the existing scheme. Recent online gaming traffic is erratically distributed, so it is very difficult to analyze. Therefore, our research focuses on a transformation scheme to obtain new smooth patterns from a messy dataset. It extracts relatively heavy‐weighted density data and then transforms them into a corresponding dataset domain to obtain a simplified graph. We compare the analytical model histogram, the chi‐square statistic, and the quantile‐quantile plot of the proposed scheme to an existing scheme. The results show that the proposed scheme demonstrates a good fit in all parts. The chi‐square statistic of our scheme for the Left 4 Dead packet size distribution is less than one ninth of the existing one when dealing with erratic traffic.</abstract><pub>한국전자통신연구원</pub><doi>10.4218/etrij.11.1510.0087</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1225-6463
ispartof ETRI Journal, 2011, 33(2), , pp.219-229
issn 1225-6463
2233-7326
language eng
recordid cdi_nrf_kci_oai_kci_go_kr_ARTI_917889
source Alma/SFX Local Collection
subjects analytical model
curve fitting
Gaming traffic
traffic analysis
transformation approach
전자/정보통신공학
title Transformation Approach to Model Online Gaming Traffic
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T09%3A32%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_nrf_k&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transformation%20Approach%20to%20Model%20Online%20Gaming%20Traffic&rft.jtitle=ETRI%20journal&rft.au=Shin,%20KwangSik&rft.date=2011-04&rft.volume=33&rft.issue=2&rft.spage=219&rft.epage=229&rft.pages=219-229&rft.issn=1225-6463&rft.eissn=2233-7326&rft_id=info:doi/10.4218/etrij.11.1510.0087&rft_dat=%3Cwiley_nrf_k%3EETR20219%3C/wiley_nrf_k%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3299-6a624cf4fa87459dbbedeb7a1509a4c2d801eab81ddb54df1084e0ea081cda413%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true