Loading…

Clinical applications and performance of intelligent systems in dental and maxillofacial radiology: A review

Intelligent systems (i.e., artificial intelligence), particularly deep learning, are machines able to mimic the cognitive functions of humans to perform tasks of problem-solving and learning. This field deals with computational models that can think and act intelligently, like the human brain, and c...

Full description

Saved in:
Bibliographic Details
Published in:Imaging science in dentistry 2020, 50(2), , pp.81-92
Main Authors: Nagi, Ravleen, Aravinda, Konidena, Rakesh, N, Gupta, Rajesh, Pal, Ajay, Mann, Amrit Kaur
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c407t-467199d77481ed7d8a321efd79859ba9145f35476738c53bc2af6daabc26fed73
cites cdi_FETCH-LOGICAL-c407t-467199d77481ed7d8a321efd79859ba9145f35476738c53bc2af6daabc26fed73
container_end_page 92
container_issue 2
container_start_page 81
container_title Imaging science in dentistry
container_volume 50
creator Nagi, Ravleen
Aravinda, Konidena
Rakesh, N
Gupta, Rajesh
Pal, Ajay
Mann, Amrit Kaur
description Intelligent systems (i.e., artificial intelligence), particularly deep learning, are machines able to mimic the cognitive functions of humans to perform tasks of problem-solving and learning. This field deals with computational models that can think and act intelligently, like the human brain, and construct algorithms that can learn from data to make predictions. Artificial intelligence is becoming important in radiology due to its ability to detect abnormalities in radiographic images that are unnoticed by the naked human eye. These systems have reduced radiologists' workload by rapidly recording and presenting data, and thereby monitoring the treatment response with a reduced risk of cognitive bias. Intelligent systems have an important role to play and could be used by dentists as an adjunct to other imaging modalities in making appropriate diagnoses and treatment plans. In the field of maxillofacial radiology, these systems have shown promise for the interpretation of complex images, accurate localization of landmarks, characterization of bone architecture, estimation of oral cancer risk, and the assessment of metastatic lymph nodes, periapical pathologies, and maxillary sinus pathologies. This review discusses the clinical applications and scope of intelligent systems such as machine learning, artificial intelligence, and deep learning programs in maxillofacial imaging.
doi_str_mv 10.5624/isd.2020.50.2.81
format article
fullrecord <record><control><sourceid>proquest_nrf_k</sourceid><recordid>TN_cdi_nrf_kci_oai_kci_go_kr_ARTI_9478496</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2419098235</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-467199d77481ed7d8a321efd79859ba9145f35476738c53bc2af6daabc26fed73</originalsourceid><addsrcrecordid>eNpVUctqWzEUFKElCWn2WWrZLuzo_eiiYEzbBAKFkqyFrIerRvfqVrpO6r-vHIdAtTlzjmbmIA0AVxgtuSDsOjW_JIj0Di3JUuETcE4IpQupKHr3hgk5A5et_Ub9cKKkwKfgjBKBMFfkHOR1TmNyNkM7TbmDOZWxQTt6OIUaSx3s6AIsEaZxDjmnbRhn2PZtDkPrM-h7f1B3wWD_ppxLtC71SbU-lVy2-89wBWt4SuH5A3gfbW7h8rVegIdvX-_XN4u7H99v16u7hWNIzgsmJNbaS8kUDl56ZSnBIXqpFdcbqzHjkXImhaTKcbpxxEbhre1AxC6gF-DT0Xes0Ty6ZIpNL3VbzGM1q5_3t0YzqZgWnfvlyJ12myF4159TbTZTTYOt-xfl_zdj-tV9noykmAlEusHHV4Na_uxCm82QmutfZcdQds0QhjXSilDeqehIdbW0VkN8W4OROWRqeqbmkKnhyBCjMP0HHMWVsw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2419098235</pqid></control><display><type>article</type><title>Clinical applications and performance of intelligent systems in dental and maxillofacial radiology: A review</title><source>PubMed Central Free</source><creator>Nagi, Ravleen ; Aravinda, Konidena ; Rakesh, N ; Gupta, Rajesh ; Pal, Ajay ; Mann, Amrit Kaur</creator><creatorcontrib>Nagi, Ravleen ; Aravinda, Konidena ; Rakesh, N ; Gupta, Rajesh ; Pal, Ajay ; Mann, Amrit Kaur</creatorcontrib><description>Intelligent systems (i.e., artificial intelligence), particularly deep learning, are machines able to mimic the cognitive functions of humans to perform tasks of problem-solving and learning. This field deals with computational models that can think and act intelligently, like the human brain, and construct algorithms that can learn from data to make predictions. Artificial intelligence is becoming important in radiology due to its ability to detect abnormalities in radiographic images that are unnoticed by the naked human eye. These systems have reduced radiologists' workload by rapidly recording and presenting data, and thereby monitoring the treatment response with a reduced risk of cognitive bias. Intelligent systems have an important role to play and could be used by dentists as an adjunct to other imaging modalities in making appropriate diagnoses and treatment plans. In the field of maxillofacial radiology, these systems have shown promise for the interpretation of complex images, accurate localization of landmarks, characterization of bone architecture, estimation of oral cancer risk, and the assessment of metastatic lymph nodes, periapical pathologies, and maxillary sinus pathologies. This review discusses the clinical applications and scope of intelligent systems such as machine learning, artificial intelligence, and deep learning programs in maxillofacial imaging.</description><identifier>ISSN: 2233-7822</identifier><identifier>EISSN: 2233-7830</identifier><identifier>DOI: 10.5624/isd.2020.50.2.81</identifier><identifier>PMID: 32601582</identifier><language>eng</language><publisher>Korean Academy of Oral and Maxillofacial Radiology</publisher><subject>Review ; 치의학</subject><ispartof>Imaging Science in Dentistry, 2020, 50(2), , pp.81-92</ispartof><rights>Copyright © 2020 by Korean Academy of Oral and Maxillofacial Radiology 2020 Korean Academy of Oral and Maxillofacial Radiology</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-467199d77481ed7d8a321efd79859ba9145f35476738c53bc2af6daabc26fed73</citedby><cites>FETCH-LOGICAL-c407t-467199d77481ed7d8a321efd79859ba9145f35476738c53bc2af6daabc26fed73</cites><orcidid>0000-0002-6821-3462 ; 0000-0003-4388-6334 ; 0000-0002-2480-3540 ; 0000-0001-9840-2283 ; 0000-0002-7105-4546 ; 0000-0002-0369-1383</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7314602/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7314602/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002596695$$DAccess content in National Research Foundation of Korea (NRF)$$Hfree_for_read</backlink></links><search><creatorcontrib>Nagi, Ravleen</creatorcontrib><creatorcontrib>Aravinda, Konidena</creatorcontrib><creatorcontrib>Rakesh, N</creatorcontrib><creatorcontrib>Gupta, Rajesh</creatorcontrib><creatorcontrib>Pal, Ajay</creatorcontrib><creatorcontrib>Mann, Amrit Kaur</creatorcontrib><title>Clinical applications and performance of intelligent systems in dental and maxillofacial radiology: A review</title><title>Imaging science in dentistry</title><description>Intelligent systems (i.e., artificial intelligence), particularly deep learning, are machines able to mimic the cognitive functions of humans to perform tasks of problem-solving and learning. This field deals with computational models that can think and act intelligently, like the human brain, and construct algorithms that can learn from data to make predictions. Artificial intelligence is becoming important in radiology due to its ability to detect abnormalities in radiographic images that are unnoticed by the naked human eye. These systems have reduced radiologists' workload by rapidly recording and presenting data, and thereby monitoring the treatment response with a reduced risk of cognitive bias. Intelligent systems have an important role to play and could be used by dentists as an adjunct to other imaging modalities in making appropriate diagnoses and treatment plans. In the field of maxillofacial radiology, these systems have shown promise for the interpretation of complex images, accurate localization of landmarks, characterization of bone architecture, estimation of oral cancer risk, and the assessment of metastatic lymph nodes, periapical pathologies, and maxillary sinus pathologies. This review discusses the clinical applications and scope of intelligent systems such as machine learning, artificial intelligence, and deep learning programs in maxillofacial imaging.</description><subject>Review</subject><subject>치의학</subject><issn>2233-7822</issn><issn>2233-7830</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpVUctqWzEUFKElCWn2WWrZLuzo_eiiYEzbBAKFkqyFrIerRvfqVrpO6r-vHIdAtTlzjmbmIA0AVxgtuSDsOjW_JIj0Di3JUuETcE4IpQupKHr3hgk5A5et_Ub9cKKkwKfgjBKBMFfkHOR1TmNyNkM7TbmDOZWxQTt6OIUaSx3s6AIsEaZxDjmnbRhn2PZtDkPrM-h7f1B3wWD_ppxLtC71SbU-lVy2-89wBWt4SuH5A3gfbW7h8rVegIdvX-_XN4u7H99v16u7hWNIzgsmJNbaS8kUDl56ZSnBIXqpFdcbqzHjkXImhaTKcbpxxEbhre1AxC6gF-DT0Xes0Ty6ZIpNL3VbzGM1q5_3t0YzqZgWnfvlyJ12myF4159TbTZTTYOt-xfl_zdj-tV9noykmAlEusHHV4Na_uxCm82QmutfZcdQds0QhjXSilDeqehIdbW0VkN8W4OROWRqeqbmkKnhyBCjMP0HHMWVsw</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Nagi, Ravleen</creator><creator>Aravinda, Konidena</creator><creator>Rakesh, N</creator><creator>Gupta, Rajesh</creator><creator>Pal, Ajay</creator><creator>Mann, Amrit Kaur</creator><general>Korean Academy of Oral and Maxillofacial Radiology</general><general>대한영상치의학회</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>ACYCR</scope><orcidid>https://orcid.org/0000-0002-6821-3462</orcidid><orcidid>https://orcid.org/0000-0003-4388-6334</orcidid><orcidid>https://orcid.org/0000-0002-2480-3540</orcidid><orcidid>https://orcid.org/0000-0001-9840-2283</orcidid><orcidid>https://orcid.org/0000-0002-7105-4546</orcidid><orcidid>https://orcid.org/0000-0002-0369-1383</orcidid></search><sort><creationdate>20200601</creationdate><title>Clinical applications and performance of intelligent systems in dental and maxillofacial radiology: A review</title><author>Nagi, Ravleen ; Aravinda, Konidena ; Rakesh, N ; Gupta, Rajesh ; Pal, Ajay ; Mann, Amrit Kaur</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-467199d77481ed7d8a321efd79859ba9145f35476738c53bc2af6daabc26fed73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Review</topic><topic>치의학</topic><toplevel>online_resources</toplevel><creatorcontrib>Nagi, Ravleen</creatorcontrib><creatorcontrib>Aravinda, Konidena</creatorcontrib><creatorcontrib>Rakesh, N</creatorcontrib><creatorcontrib>Gupta, Rajesh</creatorcontrib><creatorcontrib>Pal, Ajay</creatorcontrib><creatorcontrib>Mann, Amrit Kaur</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Korean Citation Index (Open Access)</collection><jtitle>Imaging science in dentistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nagi, Ravleen</au><au>Aravinda, Konidena</au><au>Rakesh, N</au><au>Gupta, Rajesh</au><au>Pal, Ajay</au><au>Mann, Amrit Kaur</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Clinical applications and performance of intelligent systems in dental and maxillofacial radiology: A review</atitle><jtitle>Imaging science in dentistry</jtitle><date>2020-06-01</date><risdate>2020</risdate><volume>50</volume><issue>2</issue><spage>81</spage><epage>92</epage><pages>81-92</pages><issn>2233-7822</issn><eissn>2233-7830</eissn><abstract>Intelligent systems (i.e., artificial intelligence), particularly deep learning, are machines able to mimic the cognitive functions of humans to perform tasks of problem-solving and learning. This field deals with computational models that can think and act intelligently, like the human brain, and construct algorithms that can learn from data to make predictions. Artificial intelligence is becoming important in radiology due to its ability to detect abnormalities in radiographic images that are unnoticed by the naked human eye. These systems have reduced radiologists' workload by rapidly recording and presenting data, and thereby monitoring the treatment response with a reduced risk of cognitive bias. Intelligent systems have an important role to play and could be used by dentists as an adjunct to other imaging modalities in making appropriate diagnoses and treatment plans. In the field of maxillofacial radiology, these systems have shown promise for the interpretation of complex images, accurate localization of landmarks, characterization of bone architecture, estimation of oral cancer risk, and the assessment of metastatic lymph nodes, periapical pathologies, and maxillary sinus pathologies. This review discusses the clinical applications and scope of intelligent systems such as machine learning, artificial intelligence, and deep learning programs in maxillofacial imaging.</abstract><pub>Korean Academy of Oral and Maxillofacial Radiology</pub><pmid>32601582</pmid><doi>10.5624/isd.2020.50.2.81</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6821-3462</orcidid><orcidid>https://orcid.org/0000-0003-4388-6334</orcidid><orcidid>https://orcid.org/0000-0002-2480-3540</orcidid><orcidid>https://orcid.org/0000-0001-9840-2283</orcidid><orcidid>https://orcid.org/0000-0002-7105-4546</orcidid><orcidid>https://orcid.org/0000-0002-0369-1383</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2233-7822
ispartof Imaging Science in Dentistry, 2020, 50(2), , pp.81-92
issn 2233-7822
2233-7830
language eng
recordid cdi_nrf_kci_oai_kci_go_kr_ARTI_9478496
source PubMed Central Free
subjects Review
치의학
title Clinical applications and performance of intelligent systems in dental and maxillofacial radiology: A review
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T20%3A07%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_nrf_k&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Clinical%20applications%20and%20performance%20of%20intelligent%20systems%20in%20dental%20and%20maxillofacial%20radiology:%20A%20review&rft.jtitle=Imaging%20science%20in%20dentistry&rft.au=Nagi,%20Ravleen&rft.date=2020-06-01&rft.volume=50&rft.issue=2&rft.spage=81&rft.epage=92&rft.pages=81-92&rft.issn=2233-7822&rft.eissn=2233-7830&rft_id=info:doi/10.5624/isd.2020.50.2.81&rft_dat=%3Cproquest_nrf_k%3E2419098235%3C/proquest_nrf_k%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c407t-467199d77481ed7d8a321efd79859ba9145f35476738c53bc2af6daabc26fed73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2419098235&rft_id=info:pmid/32601582&rfr_iscdi=true