Loading…

An optimal environmental test sequence based on severity for electrical units in automobiles

Electronics in automobiles must operate safely and have excellent reliability; however, components are often unreliable and cause product recalls. There is an urgent need to solve this problem. Conventionally, components are tested individually so it is not possible to simulate environmental failure...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mechanical science and technology 2020, 34(10), , pp.4051-4059
Main Authors: Sim, Hyun Su, Kim, Yong Soo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Electronics in automobiles must operate safely and have excellent reliability; however, components are often unreliable and cause product recalls. There is an urgent need to solve this problem. Conventionally, components are tested individually so it is not possible to simulate environmental failures. The purpose of this study was to utilize severe field-simulations and to propose determining environmental test sequence a 2-phase process for automotive electronics that satisfy the minimum severity for each leg and minimize the test cost. In this work, we examined international standards to understand testing sequences, and calculated the severity of ISO 16750 test items, based on an analytic hierarchy process. The modeled functions were established, and test sequences were optimized using a genetic algorithm. The proposed test sequence was based on the results of this analysis by assumed real conditions. Additionally, the variance analysis was performed for the affected total cost to find factors about determined test sequences. Finally, significant test sequences of ISO 16750 were partially presented by analyzing the results for applying in the automotive industry.
ISSN:1738-494X
1976-3824
DOI:10.1007/s12206-020-2216-7