Loading…
Frequency spectra characterization of noncoding human genomic sequences
Background Noncoding sequences have been demonstrated to possess regulatory functions. Its classification is challenging because they do not show well-defined nucleotide patterns that can correlate with their biological functions. Genomic signal processing techniques like Fourier transform have been...
Saved in:
Published in: | Genes & genomics 2020, 42(10), , pp.1215-1226 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Background
Noncoding sequences have been demonstrated to possess regulatory functions. Its classification is challenging because they do not show well-defined nucleotide patterns that can correlate with their biological functions. Genomic signal processing techniques like Fourier transform have been employed to characterize coding and noncoding sequences. This transformation in a systematic whole-genome noncoding library, such as the ENCODE database, can provide evidence of a periodic behaviour in the noncoding sequences that correlates with their regulatory functions.
Objective
The objective of this study was to classify different noncoding regulatory regions through their frequency spectra.
Methods
We computed machine learning algorithms to classify the noncoding regulatory sequences frequency spectra.
Results
The sequences from different regulatory regions, cell lines, and chromosomes possessed distinct frequency spectra, and that machine learning classifiers (such as those of the support vector machine type) could successfully discriminate among regulatory regions, thus correlating the frequency spectra with their biological functions
Conclusion
Our work supports the idea that there are patterns in the noncoding sequences of the genome. |
---|---|
ISSN: | 1976-9571 2092-9293 |
DOI: | 10.1007/s13258-020-00980-2 |