Loading…
PD Control of a Manipulator with Gravity and Inertia Compensation Using an RBF Neural Network
Dynamic compensation can improve the accuracy of trajectory tracking for industrial manipulators. For irregularly shape or flexible manipulators, however, it is difficult to measure the position of the center of mass (COM) so that its dynamic model cannot be expressed explicitly. This paper proposes...
Saved in:
Published in: | International journal of control, automation, and systems 2020, Automation, and Systems, 18(12), , pp.3083-3092 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c350t-f69dffe2fa3fb272defeece33b05cb6b4d43e88044f402481dd6874982130b6d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c350t-f69dffe2fa3fb272defeece33b05cb6b4d43e88044f402481dd6874982130b6d3 |
container_end_page | 3092 |
container_issue | 12 |
container_start_page | 3083 |
container_title | International journal of control, automation, and systems |
container_volume | 18 |
creator | Zhang, Yueyuan Kim, Dongeon Zhao, Yudong Lee, Jangmyung |
description | Dynamic compensation can improve the accuracy of trajectory tracking for industrial manipulators. For irregularly shape or flexible manipulators, however, it is difficult to measure the position of the center of mass (COM) so that its dynamic model cannot be expressed explicitly. This paper proposes a proportional derivative (PD) controller with radial basis function neural network based gravity and inertia compensation (RBFNN-GIC). The RBFNN is utilized to estimate the gravity disturbance and to enable identification of COM to calculate the compensated inertia term. The proposed strategy based on the dynamic model can be used on any robot arm whose COM, gravity and inertia are difficult to obtain. To demonstrate the optimization and effectiveness of proposed PD controller, comparative experiments between the proposed control scheme and the traditional data-fitting method least mean square method (LMS) are conducted on a 3 degree of freedom (DOF) robotic manipulator. |
doi_str_mv | 10.1007/s12555-019-0482-x |
format | article |
fullrecord | <record><control><sourceid>proquest_nrf_k</sourceid><recordid>TN_cdi_nrf_kci_oai_kci_go_kr_ARTI_9607548</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2846272986</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-f69dffe2fa3fb272defeece33b05cb6b4d43e88044f402481dd6874982130b6d3</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEuXxAewssWIRGDuO4yyhUKjESwiWyHISu5gWu9guj7_HECRWrO5izpkZXYT2CBwSgPooElpVVQGkKYAJWnysoREFqAoGDV1HI1I1ouCM8U20FeMzAOe0qUfo8fYUj71LwS-wN1jhK-XscrVQyQf8btMTPg_qzaZPrFyPp06HZFU2XpbaRZWsd_ghWjfLY3x3MsHXehXUIkd692G-gzaMWkS9-5vb6GFydj--KC5vzqfj48uiKytIheFNb4ymRpWmpTXttdG602XZQtW1vGU9K7UQwJhhQJkgfc9FzRpBSQkt78ttdDDsdcHIeWelV_YnZ17Ogzy-u5_KhkNdMZHZ_YFdBv-60jHJZ78KLr8nqWA8n28EzxQZqC74GIM2chnsiwqfkoD8blwOjcvcuPxuXH5khw5OzKyb6fC3-X_pCzTVg0o</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2846272986</pqid></control><display><type>article</type><title>PD Control of a Manipulator with Gravity and Inertia Compensation Using an RBF Neural Network</title><source>Springer Nature</source><creator>Zhang, Yueyuan ; Kim, Dongeon ; Zhao, Yudong ; Lee, Jangmyung</creator><creatorcontrib>Zhang, Yueyuan ; Kim, Dongeon ; Zhao, Yudong ; Lee, Jangmyung</creatorcontrib><description>Dynamic compensation can improve the accuracy of trajectory tracking for industrial manipulators. For irregularly shape or flexible manipulators, however, it is difficult to measure the position of the center of mass (COM) so that its dynamic model cannot be expressed explicitly. This paper proposes a proportional derivative (PD) controller with radial basis function neural network based gravity and inertia compensation (RBFNN-GIC). The RBFNN is utilized to estimate the gravity disturbance and to enable identification of COM to calculate the compensated inertia term. The proposed strategy based on the dynamic model can be used on any robot arm whose COM, gravity and inertia are difficult to obtain. To demonstrate the optimization and effectiveness of proposed PD controller, comparative experiments between the proposed control scheme and the traditional data-fitting method least mean square method (LMS) are conducted on a 3 degree of freedom (DOF) robotic manipulator.</description><identifier>ISSN: 1598-6446</identifier><identifier>EISSN: 2005-4092</identifier><identifier>DOI: 10.1007/s12555-019-0482-x</identifier><language>eng</language><publisher>Bucheon / Seoul: Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers</publisher><subject>Compensation ; Control ; Control Theory and Applications ; Controllers ; Degrees of freedom ; Dynamic models ; Engineering ; Flexible manipulators ; Inertia ; Mechatronics ; Neural networks ; Optimization ; Position measurement ; Proportional derivative ; Radial basis function ; Robot arms ; Robotics ; 제어계측공학</subject><ispartof>International Journal of Control, 2020, Automation, and Systems, 18(12), , pp.3083-3092</ispartof><rights>ICROS, KIEE and Springer 2020</rights><rights>ICROS, KIEE and Springer 2020.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-f69dffe2fa3fb272defeece33b05cb6b4d43e88044f402481dd6874982130b6d3</citedby><cites>FETCH-LOGICAL-c350t-f69dffe2fa3fb272defeece33b05cb6b4d43e88044f402481dd6874982130b6d3</cites><orcidid>0000-0003-4290-8087</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids><backlink>$$Uhttps://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002648323$$DAccess content in National Research Foundation of Korea (NRF)$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Yueyuan</creatorcontrib><creatorcontrib>Kim, Dongeon</creatorcontrib><creatorcontrib>Zhao, Yudong</creatorcontrib><creatorcontrib>Lee, Jangmyung</creatorcontrib><title>PD Control of a Manipulator with Gravity and Inertia Compensation Using an RBF Neural Network</title><title>International journal of control, automation, and systems</title><addtitle>Int. J. Control Autom. Syst</addtitle><description>Dynamic compensation can improve the accuracy of trajectory tracking for industrial manipulators. For irregularly shape or flexible manipulators, however, it is difficult to measure the position of the center of mass (COM) so that its dynamic model cannot be expressed explicitly. This paper proposes a proportional derivative (PD) controller with radial basis function neural network based gravity and inertia compensation (RBFNN-GIC). The RBFNN is utilized to estimate the gravity disturbance and to enable identification of COM to calculate the compensated inertia term. The proposed strategy based on the dynamic model can be used on any robot arm whose COM, gravity and inertia are difficult to obtain. To demonstrate the optimization and effectiveness of proposed PD controller, comparative experiments between the proposed control scheme and the traditional data-fitting method least mean square method (LMS) are conducted on a 3 degree of freedom (DOF) robotic manipulator.</description><subject>Compensation</subject><subject>Control</subject><subject>Control Theory and Applications</subject><subject>Controllers</subject><subject>Degrees of freedom</subject><subject>Dynamic models</subject><subject>Engineering</subject><subject>Flexible manipulators</subject><subject>Inertia</subject><subject>Mechatronics</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Position measurement</subject><subject>Proportional derivative</subject><subject>Radial basis function</subject><subject>Robot arms</subject><subject>Robotics</subject><subject>제어계측공학</subject><issn>1598-6446</issn><issn>2005-4092</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EEuXxAewssWIRGDuO4yyhUKjESwiWyHISu5gWu9guj7_HECRWrO5izpkZXYT2CBwSgPooElpVVQGkKYAJWnysoREFqAoGDV1HI1I1ouCM8U20FeMzAOe0qUfo8fYUj71LwS-wN1jhK-XscrVQyQf8btMTPg_qzaZPrFyPp06HZFU2XpbaRZWsd_ghWjfLY3x3MsHXehXUIkd692G-gzaMWkS9-5vb6GFydj--KC5vzqfj48uiKytIheFNb4ymRpWmpTXttdG602XZQtW1vGU9K7UQwJhhQJkgfc9FzRpBSQkt78ttdDDsdcHIeWelV_YnZ17Ogzy-u5_KhkNdMZHZ_YFdBv-60jHJZ78KLr8nqWA8n28EzxQZqC74GIM2chnsiwqfkoD8blwOjcvcuPxuXH5khw5OzKyb6fC3-X_pCzTVg0o</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Zhang, Yueyuan</creator><creator>Kim, Dongeon</creator><creator>Zhao, Yudong</creator><creator>Lee, Jangmyung</creator><general>Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers</general><general>Springer Nature B.V</general><general>제어·로봇·시스템학회</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>ACYCR</scope><orcidid>https://orcid.org/0000-0003-4290-8087</orcidid></search><sort><creationdate>20201201</creationdate><title>PD Control of a Manipulator with Gravity and Inertia Compensation Using an RBF Neural Network</title><author>Zhang, Yueyuan ; Kim, Dongeon ; Zhao, Yudong ; Lee, Jangmyung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-f69dffe2fa3fb272defeece33b05cb6b4d43e88044f402481dd6874982130b6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Compensation</topic><topic>Control</topic><topic>Control Theory and Applications</topic><topic>Controllers</topic><topic>Degrees of freedom</topic><topic>Dynamic models</topic><topic>Engineering</topic><topic>Flexible manipulators</topic><topic>Inertia</topic><topic>Mechatronics</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Position measurement</topic><topic>Proportional derivative</topic><topic>Radial basis function</topic><topic>Robot arms</topic><topic>Robotics</topic><topic>제어계측공학</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yueyuan</creatorcontrib><creatorcontrib>Kim, Dongeon</creatorcontrib><creatorcontrib>Zhao, Yudong</creatorcontrib><creatorcontrib>Lee, Jangmyung</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Korean Citation Index</collection><jtitle>International journal of control, automation, and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yueyuan</au><au>Kim, Dongeon</au><au>Zhao, Yudong</au><au>Lee, Jangmyung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PD Control of a Manipulator with Gravity and Inertia Compensation Using an RBF Neural Network</atitle><jtitle>International journal of control, automation, and systems</jtitle><stitle>Int. J. Control Autom. Syst</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>18</volume><issue>12</issue><spage>3083</spage><epage>3092</epage><pages>3083-3092</pages><issn>1598-6446</issn><eissn>2005-4092</eissn><abstract>Dynamic compensation can improve the accuracy of trajectory tracking for industrial manipulators. For irregularly shape or flexible manipulators, however, it is difficult to measure the position of the center of mass (COM) so that its dynamic model cannot be expressed explicitly. This paper proposes a proportional derivative (PD) controller with radial basis function neural network based gravity and inertia compensation (RBFNN-GIC). The RBFNN is utilized to estimate the gravity disturbance and to enable identification of COM to calculate the compensated inertia term. The proposed strategy based on the dynamic model can be used on any robot arm whose COM, gravity and inertia are difficult to obtain. To demonstrate the optimization and effectiveness of proposed PD controller, comparative experiments between the proposed control scheme and the traditional data-fitting method least mean square method (LMS) are conducted on a 3 degree of freedom (DOF) robotic manipulator.</abstract><cop>Bucheon / Seoul</cop><pub>Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers</pub><doi>10.1007/s12555-019-0482-x</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4290-8087</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1598-6446 |
ispartof | International Journal of Control, 2020, Automation, and Systems, 18(12), , pp.3083-3092 |
issn | 1598-6446 2005-4092 |
language | eng |
recordid | cdi_nrf_kci_oai_kci_go_kr_ARTI_9607548 |
source | Springer Nature |
subjects | Compensation Control Control Theory and Applications Controllers Degrees of freedom Dynamic models Engineering Flexible manipulators Inertia Mechatronics Neural networks Optimization Position measurement Proportional derivative Radial basis function Robot arms Robotics 제어계측공학 |
title | PD Control of a Manipulator with Gravity and Inertia Compensation Using an RBF Neural Network |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T05%3A49%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_nrf_k&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PD%20Control%20of%20a%20Manipulator%20with%20Gravity%20and%20Inertia%20Compensation%20Using%20an%20RBF%20Neural%20Network&rft.jtitle=International%20journal%20of%20control,%20automation,%20and%20systems&rft.au=Zhang,%20Yueyuan&rft.date=2020-12-01&rft.volume=18&rft.issue=12&rft.spage=3083&rft.epage=3092&rft.pages=3083-3092&rft.issn=1598-6446&rft.eissn=2005-4092&rft_id=info:doi/10.1007/s12555-019-0482-x&rft_dat=%3Cproquest_nrf_k%3E2846272986%3C/proquest_nrf_k%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c350t-f69dffe2fa3fb272defeece33b05cb6b4d43e88044f402481dd6874982130b6d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2846272986&rft_id=info:pmid/&rfr_iscdi=true |