Loading…

PD Control of a Manipulator with Gravity and Inertia Compensation Using an RBF Neural Network

Dynamic compensation can improve the accuracy of trajectory tracking for industrial manipulators. For irregularly shape or flexible manipulators, however, it is difficult to measure the position of the center of mass (COM) so that its dynamic model cannot be expressed explicitly. This paper proposes...

Full description

Saved in:
Bibliographic Details
Published in:International journal of control, automation, and systems 2020, Automation, and Systems, 18(12), , pp.3083-3092
Main Authors: Zhang, Yueyuan, Kim, Dongeon, Zhao, Yudong, Lee, Jangmyung
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c350t-f69dffe2fa3fb272defeece33b05cb6b4d43e88044f402481dd6874982130b6d3
cites cdi_FETCH-LOGICAL-c350t-f69dffe2fa3fb272defeece33b05cb6b4d43e88044f402481dd6874982130b6d3
container_end_page 3092
container_issue 12
container_start_page 3083
container_title International journal of control, automation, and systems
container_volume 18
creator Zhang, Yueyuan
Kim, Dongeon
Zhao, Yudong
Lee, Jangmyung
description Dynamic compensation can improve the accuracy of trajectory tracking for industrial manipulators. For irregularly shape or flexible manipulators, however, it is difficult to measure the position of the center of mass (COM) so that its dynamic model cannot be expressed explicitly. This paper proposes a proportional derivative (PD) controller with radial basis function neural network based gravity and inertia compensation (RBFNN-GIC). The RBFNN is utilized to estimate the gravity disturbance and to enable identification of COM to calculate the compensated inertia term. The proposed strategy based on the dynamic model can be used on any robot arm whose COM, gravity and inertia are difficult to obtain. To demonstrate the optimization and effectiveness of proposed PD controller, comparative experiments between the proposed control scheme and the traditional data-fitting method least mean square method (LMS) are conducted on a 3 degree of freedom (DOF) robotic manipulator.
doi_str_mv 10.1007/s12555-019-0482-x
format article
fullrecord <record><control><sourceid>proquest_nrf_k</sourceid><recordid>TN_cdi_nrf_kci_oai_kci_go_kr_ARTI_9607548</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2846272986</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-f69dffe2fa3fb272defeece33b05cb6b4d43e88044f402481dd6874982130b6d3</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEuXxAewssWIRGDuO4yyhUKjESwiWyHISu5gWu9guj7_HECRWrO5izpkZXYT2CBwSgPooElpVVQGkKYAJWnysoREFqAoGDV1HI1I1ouCM8U20FeMzAOe0qUfo8fYUj71LwS-wN1jhK-XscrVQyQf8btMTPg_qzaZPrFyPp06HZFU2XpbaRZWsd_ghWjfLY3x3MsHXehXUIkd692G-gzaMWkS9-5vb6GFydj--KC5vzqfj48uiKytIheFNb4ymRpWmpTXttdG602XZQtW1vGU9K7UQwJhhQJkgfc9FzRpBSQkt78ttdDDsdcHIeWelV_YnZ17Ogzy-u5_KhkNdMZHZ_YFdBv-60jHJZ78KLr8nqWA8n28EzxQZqC74GIM2chnsiwqfkoD8blwOjcvcuPxuXH5khw5OzKyb6fC3-X_pCzTVg0o</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2846272986</pqid></control><display><type>article</type><title>PD Control of a Manipulator with Gravity and Inertia Compensation Using an RBF Neural Network</title><source>Springer Nature</source><creator>Zhang, Yueyuan ; Kim, Dongeon ; Zhao, Yudong ; Lee, Jangmyung</creator><creatorcontrib>Zhang, Yueyuan ; Kim, Dongeon ; Zhao, Yudong ; Lee, Jangmyung</creatorcontrib><description>Dynamic compensation can improve the accuracy of trajectory tracking for industrial manipulators. For irregularly shape or flexible manipulators, however, it is difficult to measure the position of the center of mass (COM) so that its dynamic model cannot be expressed explicitly. This paper proposes a proportional derivative (PD) controller with radial basis function neural network based gravity and inertia compensation (RBFNN-GIC). The RBFNN is utilized to estimate the gravity disturbance and to enable identification of COM to calculate the compensated inertia term. The proposed strategy based on the dynamic model can be used on any robot arm whose COM, gravity and inertia are difficult to obtain. To demonstrate the optimization and effectiveness of proposed PD controller, comparative experiments between the proposed control scheme and the traditional data-fitting method least mean square method (LMS) are conducted on a 3 degree of freedom (DOF) robotic manipulator.</description><identifier>ISSN: 1598-6446</identifier><identifier>EISSN: 2005-4092</identifier><identifier>DOI: 10.1007/s12555-019-0482-x</identifier><language>eng</language><publisher>Bucheon / Seoul: Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers</publisher><subject>Compensation ; Control ; Control Theory and Applications ; Controllers ; Degrees of freedom ; Dynamic models ; Engineering ; Flexible manipulators ; Inertia ; Mechatronics ; Neural networks ; Optimization ; Position measurement ; Proportional derivative ; Radial basis function ; Robot arms ; Robotics ; 제어계측공학</subject><ispartof>International Journal of Control, 2020, Automation, and Systems, 18(12), , pp.3083-3092</ispartof><rights>ICROS, KIEE and Springer 2020</rights><rights>ICROS, KIEE and Springer 2020.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-f69dffe2fa3fb272defeece33b05cb6b4d43e88044f402481dd6874982130b6d3</citedby><cites>FETCH-LOGICAL-c350t-f69dffe2fa3fb272defeece33b05cb6b4d43e88044f402481dd6874982130b6d3</cites><orcidid>0000-0003-4290-8087</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids><backlink>$$Uhttps://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002648323$$DAccess content in National Research Foundation of Korea (NRF)$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Yueyuan</creatorcontrib><creatorcontrib>Kim, Dongeon</creatorcontrib><creatorcontrib>Zhao, Yudong</creatorcontrib><creatorcontrib>Lee, Jangmyung</creatorcontrib><title>PD Control of a Manipulator with Gravity and Inertia Compensation Using an RBF Neural Network</title><title>International journal of control, automation, and systems</title><addtitle>Int. J. Control Autom. Syst</addtitle><description>Dynamic compensation can improve the accuracy of trajectory tracking for industrial manipulators. For irregularly shape or flexible manipulators, however, it is difficult to measure the position of the center of mass (COM) so that its dynamic model cannot be expressed explicitly. This paper proposes a proportional derivative (PD) controller with radial basis function neural network based gravity and inertia compensation (RBFNN-GIC). The RBFNN is utilized to estimate the gravity disturbance and to enable identification of COM to calculate the compensated inertia term. The proposed strategy based on the dynamic model can be used on any robot arm whose COM, gravity and inertia are difficult to obtain. To demonstrate the optimization and effectiveness of proposed PD controller, comparative experiments between the proposed control scheme and the traditional data-fitting method least mean square method (LMS) are conducted on a 3 degree of freedom (DOF) robotic manipulator.</description><subject>Compensation</subject><subject>Control</subject><subject>Control Theory and Applications</subject><subject>Controllers</subject><subject>Degrees of freedom</subject><subject>Dynamic models</subject><subject>Engineering</subject><subject>Flexible manipulators</subject><subject>Inertia</subject><subject>Mechatronics</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Position measurement</subject><subject>Proportional derivative</subject><subject>Radial basis function</subject><subject>Robot arms</subject><subject>Robotics</subject><subject>제어계측공학</subject><issn>1598-6446</issn><issn>2005-4092</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EEuXxAewssWIRGDuO4yyhUKjESwiWyHISu5gWu9guj7_HECRWrO5izpkZXYT2CBwSgPooElpVVQGkKYAJWnysoREFqAoGDV1HI1I1ouCM8U20FeMzAOe0qUfo8fYUj71LwS-wN1jhK-XscrVQyQf8btMTPg_qzaZPrFyPp06HZFU2XpbaRZWsd_ghWjfLY3x3MsHXehXUIkd692G-gzaMWkS9-5vb6GFydj--KC5vzqfj48uiKytIheFNb4ymRpWmpTXttdG602XZQtW1vGU9K7UQwJhhQJkgfc9FzRpBSQkt78ttdDDsdcHIeWelV_YnZ17Ogzy-u5_KhkNdMZHZ_YFdBv-60jHJZ78KLr8nqWA8n28EzxQZqC74GIM2chnsiwqfkoD8blwOjcvcuPxuXH5khw5OzKyb6fC3-X_pCzTVg0o</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Zhang, Yueyuan</creator><creator>Kim, Dongeon</creator><creator>Zhao, Yudong</creator><creator>Lee, Jangmyung</creator><general>Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers</general><general>Springer Nature B.V</general><general>제어·로봇·시스템학회</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>ACYCR</scope><orcidid>https://orcid.org/0000-0003-4290-8087</orcidid></search><sort><creationdate>20201201</creationdate><title>PD Control of a Manipulator with Gravity and Inertia Compensation Using an RBF Neural Network</title><author>Zhang, Yueyuan ; Kim, Dongeon ; Zhao, Yudong ; Lee, Jangmyung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-f69dffe2fa3fb272defeece33b05cb6b4d43e88044f402481dd6874982130b6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Compensation</topic><topic>Control</topic><topic>Control Theory and Applications</topic><topic>Controllers</topic><topic>Degrees of freedom</topic><topic>Dynamic models</topic><topic>Engineering</topic><topic>Flexible manipulators</topic><topic>Inertia</topic><topic>Mechatronics</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Position measurement</topic><topic>Proportional derivative</topic><topic>Radial basis function</topic><topic>Robot arms</topic><topic>Robotics</topic><topic>제어계측공학</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yueyuan</creatorcontrib><creatorcontrib>Kim, Dongeon</creatorcontrib><creatorcontrib>Zhao, Yudong</creatorcontrib><creatorcontrib>Lee, Jangmyung</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Korean Citation Index</collection><jtitle>International journal of control, automation, and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yueyuan</au><au>Kim, Dongeon</au><au>Zhao, Yudong</au><au>Lee, Jangmyung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PD Control of a Manipulator with Gravity and Inertia Compensation Using an RBF Neural Network</atitle><jtitle>International journal of control, automation, and systems</jtitle><stitle>Int. J. Control Autom. Syst</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>18</volume><issue>12</issue><spage>3083</spage><epage>3092</epage><pages>3083-3092</pages><issn>1598-6446</issn><eissn>2005-4092</eissn><abstract>Dynamic compensation can improve the accuracy of trajectory tracking for industrial manipulators. For irregularly shape or flexible manipulators, however, it is difficult to measure the position of the center of mass (COM) so that its dynamic model cannot be expressed explicitly. This paper proposes a proportional derivative (PD) controller with radial basis function neural network based gravity and inertia compensation (RBFNN-GIC). The RBFNN is utilized to estimate the gravity disturbance and to enable identification of COM to calculate the compensated inertia term. The proposed strategy based on the dynamic model can be used on any robot arm whose COM, gravity and inertia are difficult to obtain. To demonstrate the optimization and effectiveness of proposed PD controller, comparative experiments between the proposed control scheme and the traditional data-fitting method least mean square method (LMS) are conducted on a 3 degree of freedom (DOF) robotic manipulator.</abstract><cop>Bucheon / Seoul</cop><pub>Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers</pub><doi>10.1007/s12555-019-0482-x</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4290-8087</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1598-6446
ispartof International Journal of Control, 2020, Automation, and Systems, 18(12), , pp.3083-3092
issn 1598-6446
2005-4092
language eng
recordid cdi_nrf_kci_oai_kci_go_kr_ARTI_9607548
source Springer Nature
subjects Compensation
Control
Control Theory and Applications
Controllers
Degrees of freedom
Dynamic models
Engineering
Flexible manipulators
Inertia
Mechatronics
Neural networks
Optimization
Position measurement
Proportional derivative
Radial basis function
Robot arms
Robotics
제어계측공학
title PD Control of a Manipulator with Gravity and Inertia Compensation Using an RBF Neural Network
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T05%3A49%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_nrf_k&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PD%20Control%20of%20a%20Manipulator%20with%20Gravity%20and%20Inertia%20Compensation%20Using%20an%20RBF%20Neural%20Network&rft.jtitle=International%20journal%20of%20control,%20automation,%20and%20systems&rft.au=Zhang,%20Yueyuan&rft.date=2020-12-01&rft.volume=18&rft.issue=12&rft.spage=3083&rft.epage=3092&rft.pages=3083-3092&rft.issn=1598-6446&rft.eissn=2005-4092&rft_id=info:doi/10.1007/s12555-019-0482-x&rft_dat=%3Cproquest_nrf_k%3E2846272986%3C/proquest_nrf_k%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c350t-f69dffe2fa3fb272defeece33b05cb6b4d43e88044f402481dd6874982130b6d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2846272986&rft_id=info:pmid/&rfr_iscdi=true