Loading…
Improved prediction model for H2/CO combustion risk using a calculated non-adiabatic flame temperature model
During severe nuclear power plant (NPP) accidents, a H2/CO mixture can be generated in the reactor pressure vessel by core degradation and in the containment as well by molten corium-concrete interaction. In spite of its importance, a state-of-the-art methodology predicting H2/CO combustion risk rel...
Saved in:
Published in: | Nuclear engineering and technology 2020, 52(12), , pp.2836-2846 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | During severe nuclear power plant (NPP) accidents, a H2/CO mixture can be generated in the reactor pressure vessel by core degradation and in the containment as well by molten corium-concrete interaction. In spite of its importance, a state-of-the-art methodology predicting H2/CO combustion risk relies predominantly on empirical correlations. It is therefore necessary to develop a proper methodology for flammability evaluation of H2/CO mixtures at ex-vessel phases characterized by three factors: CO concentration, high temperature, and diluents. The developed methodology adopted Le Chatelier’s law and a calculated non-adiabatic flame temperature model. The methodology allows the consideration of the individual effect of the heat transfer characteristics of hydrogen and carbon monoxide on low flammability limit prediction. The accuracy of the developed model was verified using experimental data relevant to ex-vessel phase conditions. With the developed model, the prediction accuracy was improved substantially such that the maximum relative prediction error was approximately 25% while the existing methodology showed a 76% error. The developed methodology is expected to be applicable for flammability evaluation in chemical as well as NPP industries. |
---|---|
ISSN: | 1738-5733 2234-358X |
DOI: | 10.1016/j.net.2020.07.040 |