Loading…

An Efficient Metaheuristic Technique to Control the Maximum Power Point of a Partially Shaded Photovoltaic System Using Crow Search Algorithm (CSA)

The field of research in maximum power point tracking (MPPT) methods is experiencing great progress with a wide range of techniques being suggested, ranging from simple but ineffective methods to more effective but complex ones. Therefore, it is very important to propose a strategy that is both simp...

Full description

Saved in:
Bibliographic Details
Published in:Journal of electrical engineering & technology 2021, 16(1), , pp.381-402
Main Authors: Houam, Yehya, Terki, Amel, Bouarroudj, Noureddine
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The field of research in maximum power point tracking (MPPT) methods is experiencing great progress with a wide range of techniques being suggested, ranging from simple but ineffective methods to more effective but complex ones. Therefore, it is very important to propose a strategy that is both simple and effective in controlling the global maximum power point (GMPP) for a photovoltaic (PV) system under changing weather conditions, especially in partial shading cases (PSCs). This paper proposes a new design of an MPPT controller based on a metaheuristic optimization technique called Crow Search Algorithm (CSA) to attenuate the undesirable effects of partial shading on the tracking performances of standalone PV systems. CSA is a nature-inspired method based on the intelligent skills of the crow in the search process of hidden food places. CSA technique combines efficiency and simplicity using only two tuning parameters. The stability analysis of the proposed system is performed using a Lyapunov function. The simulation results for three different partial shading cases that are zero, weak and severe shading confirm the superior performance of CSA compared to PSO and P&O techniques in term of easy implementation, high efficiency and low power loss, decreasing considerably the convergence time by an average of 38.53%.
ISSN:1975-0102
2093-7423
DOI:10.1007/s42835-020-00590-8