Loading…
An Efficient Metaheuristic Technique to Control the Maximum Power Point of a Partially Shaded Photovoltaic System Using Crow Search Algorithm (CSA)
The field of research in maximum power point tracking (MPPT) methods is experiencing great progress with a wide range of techniques being suggested, ranging from simple but ineffective methods to more effective but complex ones. Therefore, it is very important to propose a strategy that is both simp...
Saved in:
Published in: | Journal of electrical engineering & technology 2021, 16(1), , pp.381-402 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The field of research in maximum power point tracking (MPPT) methods is experiencing great progress with a wide range of techniques being suggested, ranging from simple but ineffective methods to more effective but complex ones. Therefore, it is very important to propose a strategy that is both simple and effective in controlling the global maximum power point (GMPP) for a photovoltaic (PV) system under changing weather conditions, especially in partial shading cases (PSCs). This paper proposes a new design of an MPPT controller based on a metaheuristic optimization technique called Crow Search Algorithm (CSA) to attenuate the undesirable effects of partial shading on the tracking performances of standalone PV systems. CSA is a nature-inspired method based on the intelligent skills of the crow in the search process of hidden food places. CSA technique combines efficiency and simplicity using only two tuning parameters. The stability analysis of the proposed system is performed using a Lyapunov function. The simulation results for three different partial shading cases that are zero, weak and severe shading confirm the superior performance of CSA compared to PSO and P&O techniques in term of easy implementation, high efficiency and low power loss, decreasing considerably the convergence time by an average of 38.53%. |
---|---|
ISSN: | 1975-0102 2093-7423 |
DOI: | 10.1007/s42835-020-00590-8 |