Loading…
Discovering Station Patterns of Urban Transit Network with Multisource Data: Empirical Evidence in Jinan, China
The various performances of buses at stations bring lots of difficulties for operators to manage them to improve the service quality. This paper proposes a data-driven framework to analyze the patterns of stations with network structure data, points of interest (POI) data and vehicle global position...
Saved in:
Published in: | KSCE journal of civil engineering 2021, 25(2), , pp.680-691 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c402t-53e47656ef61b4cddd68fac2e58ba0c40fedb5956c94093c61a1cee00744dfab3 |
---|---|
cites | cdi_FETCH-LOGICAL-c402t-53e47656ef61b4cddd68fac2e58ba0c40fedb5956c94093c61a1cee00744dfab3 |
container_end_page | 691 |
container_issue | 2 |
container_start_page | 680 |
container_title | KSCE journal of civil engineering |
container_volume | 25 |
creator | Zhang, Hui Li, Xu Zhang, Lele Wang, Wei Jia, Jianmin Shi, Baiying |
description | The various performances of buses at stations bring lots of difficulties for operators to manage them to improve the service quality. This paper proposes a data-driven framework to analyze the patterns of stations with network structure data, points of interest (POI) data and vehicle global positioning system (GPS) trajectory data. First, we build six indicators based on these data to measure the performance from station perspective. The results show that the number of POI around stations within 1 kilometer follows an exponential distribution. Moreover, the average headway and headway deviation of stations follow lognormal distributions. Second, we use agglomerative hierarchical clustering method to divided bus stations into different groups. Results indicate that the bus stations of Jinan could be divided into four groups with obvious characteristics. The findings could help operators to make exclusive strategies to manage bus systems. |
doi_str_mv | 10.1007/s12205-020-0806-7 |
format | article |
fullrecord | <record><control><sourceid>proquest_nrf_k</sourceid><recordid>TN_cdi_nrf_kci_oai_kci_go_kr_ARTI_9705611</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919609228</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-53e47656ef61b4cddd68fac2e58ba0c40fedb5956c94093c61a1cee00744dfab3</originalsourceid><addsrcrecordid>eNp1kUtPAyEUhSdGE5vaH-COxJWJo8DMMOCuqVVr6iPargnDMC19QAXaxn8vdUxcyeYQ7nduuPckyTmC1wjC8sYjjGGRQgxTSCFJy6Okg1hJ0oxCehzvGMdHRulp0vN-AePJcEmzopPYO-2l3SmnzQx8BBG0NeBNhKCc8cA2YOoqYcDECeN1AC8q7K1bgr0Oc_C8XQXt7dZJBe5EELdguN5op6VYgeFO18rEgjbgSRthrsBgHvUsOWnEyqver3aT6f1wMnhMx68Po0F_nMoc4pAWmcpLUhDVEFTlsq5rQhshsSpoJWBkGlVXBSuIZDlkmSRIIKlUXEae142osm5y2fY1ruFLqbkV-kdnli8d779PRpyVsCAIRfaiZTfOfm6VD3wRhzLxexwzxAhkGNNIoZaSznrvVMM3Tq-F--II8kMMvI2Bxxj4IQZeRg9uPX5zWLByf53_N30D2uGKbw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919609228</pqid></control><display><type>article</type><title>Discovering Station Patterns of Urban Transit Network with Multisource Data: Empirical Evidence in Jinan, China</title><source>Springer Nature</source><creator>Zhang, Hui ; Li, Xu ; Zhang, Lele ; Wang, Wei ; Jia, Jianmin ; Shi, Baiying</creator><creatorcontrib>Zhang, Hui ; Li, Xu ; Zhang, Lele ; Wang, Wei ; Jia, Jianmin ; Shi, Baiying</creatorcontrib><description>The various performances of buses at stations bring lots of difficulties for operators to manage them to improve the service quality. This paper proposes a data-driven framework to analyze the patterns of stations with network structure data, points of interest (POI) data and vehicle global positioning system (GPS) trajectory data. First, we build six indicators based on these data to measure the performance from station perspective. The results show that the number of POI around stations within 1 kilometer follows an exponential distribution. Moreover, the average headway and headway deviation of stations follow lognormal distributions. Second, we use agglomerative hierarchical clustering method to divided bus stations into different groups. Results indicate that the bus stations of Jinan could be divided into four groups with obvious characteristics. The findings could help operators to make exclusive strategies to manage bus systems.</description><identifier>ISSN: 1226-7988</identifier><identifier>EISSN: 1976-3808</identifier><identifier>DOI: 10.1007/s12205-020-0806-7</identifier><language>eng</language><publisher>Seoul: Korean Society of Civil Engineers</publisher><subject>Big Data ; Brand loyalty ; Buses ; Civil Engineering ; Cluster analysis ; Clustering ; Data mining ; Empirical analysis ; Engineering ; Geotechnical Engineering & Applied Earth Sciences ; Global positioning systems ; GPS ; Headways ; Industrial Pollution Prevention ; Land use ; Methods ; Operators ; Performance evaluation ; Positioning systems ; Probability distribution functions ; Public transportation ; Quality of service ; Smart cards ; Traffic congestion ; Transportation Engineering ; Travel ; Urban planning ; Urban transportation ; Vehicles ; 토목공학</subject><ispartof>KSCE Journal of Civil Engineering, 2021, 25(2), , pp.680-691</ispartof><rights>Korean Society of Civil Engineers 2020</rights><rights>Korean Society of Civil Engineers 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-53e47656ef61b4cddd68fac2e58ba0c40fedb5956c94093c61a1cee00744dfab3</citedby><cites>FETCH-LOGICAL-c402t-53e47656ef61b4cddd68fac2e58ba0c40fedb5956c94093c61a1cee00744dfab3</cites><orcidid>0000-0003-0553-5402 ; 0000-0003-1915-1127 ; 0000-0002-5331-3698 ; 0000-0003-2220-4859 ; 0000-0003-0618-6822 ; 0000-0002-2595-0139</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002680289$$DAccess content in National Research Foundation of Korea (NRF)$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Hui</creatorcontrib><creatorcontrib>Li, Xu</creatorcontrib><creatorcontrib>Zhang, Lele</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Jia, Jianmin</creatorcontrib><creatorcontrib>Shi, Baiying</creatorcontrib><title>Discovering Station Patterns of Urban Transit Network with Multisource Data: Empirical Evidence in Jinan, China</title><title>KSCE journal of civil engineering</title><addtitle>KSCE J Civ Eng</addtitle><description>The various performances of buses at stations bring lots of difficulties for operators to manage them to improve the service quality. This paper proposes a data-driven framework to analyze the patterns of stations with network structure data, points of interest (POI) data and vehicle global positioning system (GPS) trajectory data. First, we build six indicators based on these data to measure the performance from station perspective. The results show that the number of POI around stations within 1 kilometer follows an exponential distribution. Moreover, the average headway and headway deviation of stations follow lognormal distributions. Second, we use agglomerative hierarchical clustering method to divided bus stations into different groups. Results indicate that the bus stations of Jinan could be divided into four groups with obvious characteristics. The findings could help operators to make exclusive strategies to manage bus systems.</description><subject>Big Data</subject><subject>Brand loyalty</subject><subject>Buses</subject><subject>Civil Engineering</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Data mining</subject><subject>Empirical analysis</subject><subject>Engineering</subject><subject>Geotechnical Engineering & Applied Earth Sciences</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>Headways</subject><subject>Industrial Pollution Prevention</subject><subject>Land use</subject><subject>Methods</subject><subject>Operators</subject><subject>Performance evaluation</subject><subject>Positioning systems</subject><subject>Probability distribution functions</subject><subject>Public transportation</subject><subject>Quality of service</subject><subject>Smart cards</subject><subject>Traffic congestion</subject><subject>Transportation Engineering</subject><subject>Travel</subject><subject>Urban planning</subject><subject>Urban transportation</subject><subject>Vehicles</subject><subject>토목공학</subject><issn>1226-7988</issn><issn>1976-3808</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kUtPAyEUhSdGE5vaH-COxJWJo8DMMOCuqVVr6iPargnDMC19QAXaxn8vdUxcyeYQ7nduuPckyTmC1wjC8sYjjGGRQgxTSCFJy6Okg1hJ0oxCehzvGMdHRulp0vN-AePJcEmzopPYO-2l3SmnzQx8BBG0NeBNhKCc8cA2YOoqYcDECeN1AC8q7K1bgr0Oc_C8XQXt7dZJBe5EELdguN5op6VYgeFO18rEgjbgSRthrsBgHvUsOWnEyqver3aT6f1wMnhMx68Po0F_nMoc4pAWmcpLUhDVEFTlsq5rQhshsSpoJWBkGlVXBSuIZDlkmSRIIKlUXEae142osm5y2fY1ruFLqbkV-kdnli8d779PRpyVsCAIRfaiZTfOfm6VD3wRhzLxexwzxAhkGNNIoZaSznrvVMM3Tq-F--II8kMMvI2Bxxj4IQZeRg9uPX5zWLByf53_N30D2uGKbw</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Zhang, Hui</creator><creator>Li, Xu</creator><creator>Zhang, Lele</creator><creator>Wang, Wei</creator><creator>Jia, Jianmin</creator><creator>Shi, Baiying</creator><general>Korean Society of Civil Engineers</general><general>Springer Nature B.V</general><general>대한토목학회</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>ACYCR</scope><orcidid>https://orcid.org/0000-0003-0553-5402</orcidid><orcidid>https://orcid.org/0000-0003-1915-1127</orcidid><orcidid>https://orcid.org/0000-0002-5331-3698</orcidid><orcidid>https://orcid.org/0000-0003-2220-4859</orcidid><orcidid>https://orcid.org/0000-0003-0618-6822</orcidid><orcidid>https://orcid.org/0000-0002-2595-0139</orcidid></search><sort><creationdate>20210201</creationdate><title>Discovering Station Patterns of Urban Transit Network with Multisource Data: Empirical Evidence in Jinan, China</title><author>Zhang, Hui ; Li, Xu ; Zhang, Lele ; Wang, Wei ; Jia, Jianmin ; Shi, Baiying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-53e47656ef61b4cddd68fac2e58ba0c40fedb5956c94093c61a1cee00744dfab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Big Data</topic><topic>Brand loyalty</topic><topic>Buses</topic><topic>Civil Engineering</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Data mining</topic><topic>Empirical analysis</topic><topic>Engineering</topic><topic>Geotechnical Engineering & Applied Earth Sciences</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>Headways</topic><topic>Industrial Pollution Prevention</topic><topic>Land use</topic><topic>Methods</topic><topic>Operators</topic><topic>Performance evaluation</topic><topic>Positioning systems</topic><topic>Probability distribution functions</topic><topic>Public transportation</topic><topic>Quality of service</topic><topic>Smart cards</topic><topic>Traffic congestion</topic><topic>Transportation Engineering</topic><topic>Travel</topic><topic>Urban planning</topic><topic>Urban transportation</topic><topic>Vehicles</topic><topic>토목공학</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Hui</creatorcontrib><creatorcontrib>Li, Xu</creatorcontrib><creatorcontrib>Zhang, Lele</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Jia, Jianmin</creatorcontrib><creatorcontrib>Shi, Baiying</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Korean Citation Index</collection><jtitle>KSCE journal of civil engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Hui</au><au>Li, Xu</au><au>Zhang, Lele</au><au>Wang, Wei</au><au>Jia, Jianmin</au><au>Shi, Baiying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discovering Station Patterns of Urban Transit Network with Multisource Data: Empirical Evidence in Jinan, China</atitle><jtitle>KSCE journal of civil engineering</jtitle><stitle>KSCE J Civ Eng</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>25</volume><issue>2</issue><spage>680</spage><epage>691</epage><pages>680-691</pages><issn>1226-7988</issn><eissn>1976-3808</eissn><abstract>The various performances of buses at stations bring lots of difficulties for operators to manage them to improve the service quality. This paper proposes a data-driven framework to analyze the patterns of stations with network structure data, points of interest (POI) data and vehicle global positioning system (GPS) trajectory data. First, we build six indicators based on these data to measure the performance from station perspective. The results show that the number of POI around stations within 1 kilometer follows an exponential distribution. Moreover, the average headway and headway deviation of stations follow lognormal distributions. Second, we use agglomerative hierarchical clustering method to divided bus stations into different groups. Results indicate that the bus stations of Jinan could be divided into four groups with obvious characteristics. The findings could help operators to make exclusive strategies to manage bus systems.</abstract><cop>Seoul</cop><pub>Korean Society of Civil Engineers</pub><doi>10.1007/s12205-020-0806-7</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0553-5402</orcidid><orcidid>https://orcid.org/0000-0003-1915-1127</orcidid><orcidid>https://orcid.org/0000-0002-5331-3698</orcidid><orcidid>https://orcid.org/0000-0003-2220-4859</orcidid><orcidid>https://orcid.org/0000-0003-0618-6822</orcidid><orcidid>https://orcid.org/0000-0002-2595-0139</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1226-7988 |
ispartof | KSCE Journal of Civil Engineering, 2021, 25(2), , pp.680-691 |
issn | 1226-7988 1976-3808 |
language | eng |
recordid | cdi_nrf_kci_oai_kci_go_kr_ARTI_9705611 |
source | Springer Nature |
subjects | Big Data Brand loyalty Buses Civil Engineering Cluster analysis Clustering Data mining Empirical analysis Engineering Geotechnical Engineering & Applied Earth Sciences Global positioning systems GPS Headways Industrial Pollution Prevention Land use Methods Operators Performance evaluation Positioning systems Probability distribution functions Public transportation Quality of service Smart cards Traffic congestion Transportation Engineering Travel Urban planning Urban transportation Vehicles 토목공학 |
title | Discovering Station Patterns of Urban Transit Network with Multisource Data: Empirical Evidence in Jinan, China |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A22%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_nrf_k&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discovering%20Station%20Patterns%20of%20Urban%20Transit%20Network%20with%20Multisource%20Data:%20Empirical%20Evidence%20in%20Jinan,%20China&rft.jtitle=KSCE%20journal%20of%20civil%20engineering&rft.au=Zhang,%20Hui&rft.date=2021-02-01&rft.volume=25&rft.issue=2&rft.spage=680&rft.epage=691&rft.pages=680-691&rft.issn=1226-7988&rft.eissn=1976-3808&rft_id=info:doi/10.1007/s12205-020-0806-7&rft_dat=%3Cproquest_nrf_k%3E2919609228%3C/proquest_nrf_k%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c402t-53e47656ef61b4cddd68fac2e58ba0c40fedb5956c94093c61a1cee00744dfab3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2919609228&rft_id=info:pmid/&rfr_iscdi=true |