Loading…

Discovering Station Patterns of Urban Transit Network with Multisource Data: Empirical Evidence in Jinan, China

The various performances of buses at stations bring lots of difficulties for operators to manage them to improve the service quality. This paper proposes a data-driven framework to analyze the patterns of stations with network structure data, points of interest (POI) data and vehicle global position...

Full description

Saved in:
Bibliographic Details
Published in:KSCE journal of civil engineering 2021, 25(2), , pp.680-691
Main Authors: Zhang, Hui, Li, Xu, Zhang, Lele, Wang, Wei, Jia, Jianmin, Shi, Baiying
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c402t-53e47656ef61b4cddd68fac2e58ba0c40fedb5956c94093c61a1cee00744dfab3
cites cdi_FETCH-LOGICAL-c402t-53e47656ef61b4cddd68fac2e58ba0c40fedb5956c94093c61a1cee00744dfab3
container_end_page 691
container_issue 2
container_start_page 680
container_title KSCE journal of civil engineering
container_volume 25
creator Zhang, Hui
Li, Xu
Zhang, Lele
Wang, Wei
Jia, Jianmin
Shi, Baiying
description The various performances of buses at stations bring lots of difficulties for operators to manage them to improve the service quality. This paper proposes a data-driven framework to analyze the patterns of stations with network structure data, points of interest (POI) data and vehicle global positioning system (GPS) trajectory data. First, we build six indicators based on these data to measure the performance from station perspective. The results show that the number of POI around stations within 1 kilometer follows an exponential distribution. Moreover, the average headway and headway deviation of stations follow lognormal distributions. Second, we use agglomerative hierarchical clustering method to divided bus stations into different groups. Results indicate that the bus stations of Jinan could be divided into four groups with obvious characteristics. The findings could help operators to make exclusive strategies to manage bus systems.
doi_str_mv 10.1007/s12205-020-0806-7
format article
fullrecord <record><control><sourceid>proquest_nrf_k</sourceid><recordid>TN_cdi_nrf_kci_oai_kci_go_kr_ARTI_9705611</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919609228</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-53e47656ef61b4cddd68fac2e58ba0c40fedb5956c94093c61a1cee00744dfab3</originalsourceid><addsrcrecordid>eNp1kUtPAyEUhSdGE5vaH-COxJWJo8DMMOCuqVVr6iPargnDMC19QAXaxn8vdUxcyeYQ7nduuPckyTmC1wjC8sYjjGGRQgxTSCFJy6Okg1hJ0oxCehzvGMdHRulp0vN-AePJcEmzopPYO-2l3SmnzQx8BBG0NeBNhKCc8cA2YOoqYcDECeN1AC8q7K1bgr0Oc_C8XQXt7dZJBe5EELdguN5op6VYgeFO18rEgjbgSRthrsBgHvUsOWnEyqver3aT6f1wMnhMx68Po0F_nMoc4pAWmcpLUhDVEFTlsq5rQhshsSpoJWBkGlVXBSuIZDlkmSRIIKlUXEae142osm5y2fY1ruFLqbkV-kdnli8d779PRpyVsCAIRfaiZTfOfm6VD3wRhzLxexwzxAhkGNNIoZaSznrvVMM3Tq-F--II8kMMvI2Bxxj4IQZeRg9uPX5zWLByf53_N30D2uGKbw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919609228</pqid></control><display><type>article</type><title>Discovering Station Patterns of Urban Transit Network with Multisource Data: Empirical Evidence in Jinan, China</title><source>Springer Nature</source><creator>Zhang, Hui ; Li, Xu ; Zhang, Lele ; Wang, Wei ; Jia, Jianmin ; Shi, Baiying</creator><creatorcontrib>Zhang, Hui ; Li, Xu ; Zhang, Lele ; Wang, Wei ; Jia, Jianmin ; Shi, Baiying</creatorcontrib><description>The various performances of buses at stations bring lots of difficulties for operators to manage them to improve the service quality. This paper proposes a data-driven framework to analyze the patterns of stations with network structure data, points of interest (POI) data and vehicle global positioning system (GPS) trajectory data. First, we build six indicators based on these data to measure the performance from station perspective. The results show that the number of POI around stations within 1 kilometer follows an exponential distribution. Moreover, the average headway and headway deviation of stations follow lognormal distributions. Second, we use agglomerative hierarchical clustering method to divided bus stations into different groups. Results indicate that the bus stations of Jinan could be divided into four groups with obvious characteristics. The findings could help operators to make exclusive strategies to manage bus systems.</description><identifier>ISSN: 1226-7988</identifier><identifier>EISSN: 1976-3808</identifier><identifier>DOI: 10.1007/s12205-020-0806-7</identifier><language>eng</language><publisher>Seoul: Korean Society of Civil Engineers</publisher><subject>Big Data ; Brand loyalty ; Buses ; Civil Engineering ; Cluster analysis ; Clustering ; Data mining ; Empirical analysis ; Engineering ; Geotechnical Engineering &amp; Applied Earth Sciences ; Global positioning systems ; GPS ; Headways ; Industrial Pollution Prevention ; Land use ; Methods ; Operators ; Performance evaluation ; Positioning systems ; Probability distribution functions ; Public transportation ; Quality of service ; Smart cards ; Traffic congestion ; Transportation Engineering ; Travel ; Urban planning ; Urban transportation ; Vehicles ; 토목공학</subject><ispartof>KSCE Journal of Civil Engineering, 2021, 25(2), , pp.680-691</ispartof><rights>Korean Society of Civil Engineers 2020</rights><rights>Korean Society of Civil Engineers 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-53e47656ef61b4cddd68fac2e58ba0c40fedb5956c94093c61a1cee00744dfab3</citedby><cites>FETCH-LOGICAL-c402t-53e47656ef61b4cddd68fac2e58ba0c40fedb5956c94093c61a1cee00744dfab3</cites><orcidid>0000-0003-0553-5402 ; 0000-0003-1915-1127 ; 0000-0002-5331-3698 ; 0000-0003-2220-4859 ; 0000-0003-0618-6822 ; 0000-0002-2595-0139</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002680289$$DAccess content in National Research Foundation of Korea (NRF)$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Hui</creatorcontrib><creatorcontrib>Li, Xu</creatorcontrib><creatorcontrib>Zhang, Lele</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Jia, Jianmin</creatorcontrib><creatorcontrib>Shi, Baiying</creatorcontrib><title>Discovering Station Patterns of Urban Transit Network with Multisource Data: Empirical Evidence in Jinan, China</title><title>KSCE journal of civil engineering</title><addtitle>KSCE J Civ Eng</addtitle><description>The various performances of buses at stations bring lots of difficulties for operators to manage them to improve the service quality. This paper proposes a data-driven framework to analyze the patterns of stations with network structure data, points of interest (POI) data and vehicle global positioning system (GPS) trajectory data. First, we build six indicators based on these data to measure the performance from station perspective. The results show that the number of POI around stations within 1 kilometer follows an exponential distribution. Moreover, the average headway and headway deviation of stations follow lognormal distributions. Second, we use agglomerative hierarchical clustering method to divided bus stations into different groups. Results indicate that the bus stations of Jinan could be divided into four groups with obvious characteristics. The findings could help operators to make exclusive strategies to manage bus systems.</description><subject>Big Data</subject><subject>Brand loyalty</subject><subject>Buses</subject><subject>Civil Engineering</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Data mining</subject><subject>Empirical analysis</subject><subject>Engineering</subject><subject>Geotechnical Engineering &amp; Applied Earth Sciences</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>Headways</subject><subject>Industrial Pollution Prevention</subject><subject>Land use</subject><subject>Methods</subject><subject>Operators</subject><subject>Performance evaluation</subject><subject>Positioning systems</subject><subject>Probability distribution functions</subject><subject>Public transportation</subject><subject>Quality of service</subject><subject>Smart cards</subject><subject>Traffic congestion</subject><subject>Transportation Engineering</subject><subject>Travel</subject><subject>Urban planning</subject><subject>Urban transportation</subject><subject>Vehicles</subject><subject>토목공학</subject><issn>1226-7988</issn><issn>1976-3808</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kUtPAyEUhSdGE5vaH-COxJWJo8DMMOCuqVVr6iPargnDMC19QAXaxn8vdUxcyeYQ7nduuPckyTmC1wjC8sYjjGGRQgxTSCFJy6Okg1hJ0oxCehzvGMdHRulp0vN-AePJcEmzopPYO-2l3SmnzQx8BBG0NeBNhKCc8cA2YOoqYcDECeN1AC8q7K1bgr0Oc_C8XQXt7dZJBe5EELdguN5op6VYgeFO18rEgjbgSRthrsBgHvUsOWnEyqver3aT6f1wMnhMx68Po0F_nMoc4pAWmcpLUhDVEFTlsq5rQhshsSpoJWBkGlVXBSuIZDlkmSRIIKlUXEae142osm5y2fY1ruFLqbkV-kdnli8d779PRpyVsCAIRfaiZTfOfm6VD3wRhzLxexwzxAhkGNNIoZaSznrvVMM3Tq-F--II8kMMvI2Bxxj4IQZeRg9uPX5zWLByf53_N30D2uGKbw</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Zhang, Hui</creator><creator>Li, Xu</creator><creator>Zhang, Lele</creator><creator>Wang, Wei</creator><creator>Jia, Jianmin</creator><creator>Shi, Baiying</creator><general>Korean Society of Civil Engineers</general><general>Springer Nature B.V</general><general>대한토목학회</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>ACYCR</scope><orcidid>https://orcid.org/0000-0003-0553-5402</orcidid><orcidid>https://orcid.org/0000-0003-1915-1127</orcidid><orcidid>https://orcid.org/0000-0002-5331-3698</orcidid><orcidid>https://orcid.org/0000-0003-2220-4859</orcidid><orcidid>https://orcid.org/0000-0003-0618-6822</orcidid><orcidid>https://orcid.org/0000-0002-2595-0139</orcidid></search><sort><creationdate>20210201</creationdate><title>Discovering Station Patterns of Urban Transit Network with Multisource Data: Empirical Evidence in Jinan, China</title><author>Zhang, Hui ; Li, Xu ; Zhang, Lele ; Wang, Wei ; Jia, Jianmin ; Shi, Baiying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-53e47656ef61b4cddd68fac2e58ba0c40fedb5956c94093c61a1cee00744dfab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Big Data</topic><topic>Brand loyalty</topic><topic>Buses</topic><topic>Civil Engineering</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Data mining</topic><topic>Empirical analysis</topic><topic>Engineering</topic><topic>Geotechnical Engineering &amp; Applied Earth Sciences</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>Headways</topic><topic>Industrial Pollution Prevention</topic><topic>Land use</topic><topic>Methods</topic><topic>Operators</topic><topic>Performance evaluation</topic><topic>Positioning systems</topic><topic>Probability distribution functions</topic><topic>Public transportation</topic><topic>Quality of service</topic><topic>Smart cards</topic><topic>Traffic congestion</topic><topic>Transportation Engineering</topic><topic>Travel</topic><topic>Urban planning</topic><topic>Urban transportation</topic><topic>Vehicles</topic><topic>토목공학</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Hui</creatorcontrib><creatorcontrib>Li, Xu</creatorcontrib><creatorcontrib>Zhang, Lele</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Jia, Jianmin</creatorcontrib><creatorcontrib>Shi, Baiying</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Korean Citation Index</collection><jtitle>KSCE journal of civil engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Hui</au><au>Li, Xu</au><au>Zhang, Lele</au><au>Wang, Wei</au><au>Jia, Jianmin</au><au>Shi, Baiying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discovering Station Patterns of Urban Transit Network with Multisource Data: Empirical Evidence in Jinan, China</atitle><jtitle>KSCE journal of civil engineering</jtitle><stitle>KSCE J Civ Eng</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>25</volume><issue>2</issue><spage>680</spage><epage>691</epage><pages>680-691</pages><issn>1226-7988</issn><eissn>1976-3808</eissn><abstract>The various performances of buses at stations bring lots of difficulties for operators to manage them to improve the service quality. This paper proposes a data-driven framework to analyze the patterns of stations with network structure data, points of interest (POI) data and vehicle global positioning system (GPS) trajectory data. First, we build six indicators based on these data to measure the performance from station perspective. The results show that the number of POI around stations within 1 kilometer follows an exponential distribution. Moreover, the average headway and headway deviation of stations follow lognormal distributions. Second, we use agglomerative hierarchical clustering method to divided bus stations into different groups. Results indicate that the bus stations of Jinan could be divided into four groups with obvious characteristics. The findings could help operators to make exclusive strategies to manage bus systems.</abstract><cop>Seoul</cop><pub>Korean Society of Civil Engineers</pub><doi>10.1007/s12205-020-0806-7</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0553-5402</orcidid><orcidid>https://orcid.org/0000-0003-1915-1127</orcidid><orcidid>https://orcid.org/0000-0002-5331-3698</orcidid><orcidid>https://orcid.org/0000-0003-2220-4859</orcidid><orcidid>https://orcid.org/0000-0003-0618-6822</orcidid><orcidid>https://orcid.org/0000-0002-2595-0139</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1226-7988
ispartof KSCE Journal of Civil Engineering, 2021, 25(2), , pp.680-691
issn 1226-7988
1976-3808
language eng
recordid cdi_nrf_kci_oai_kci_go_kr_ARTI_9705611
source Springer Nature
subjects Big Data
Brand loyalty
Buses
Civil Engineering
Cluster analysis
Clustering
Data mining
Empirical analysis
Engineering
Geotechnical Engineering & Applied Earth Sciences
Global positioning systems
GPS
Headways
Industrial Pollution Prevention
Land use
Methods
Operators
Performance evaluation
Positioning systems
Probability distribution functions
Public transportation
Quality of service
Smart cards
Traffic congestion
Transportation Engineering
Travel
Urban planning
Urban transportation
Vehicles
토목공학
title Discovering Station Patterns of Urban Transit Network with Multisource Data: Empirical Evidence in Jinan, China
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A22%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_nrf_k&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discovering%20Station%20Patterns%20of%20Urban%20Transit%20Network%20with%20Multisource%20Data:%20Empirical%20Evidence%20in%20Jinan,%20China&rft.jtitle=KSCE%20journal%20of%20civil%20engineering&rft.au=Zhang,%20Hui&rft.date=2021-02-01&rft.volume=25&rft.issue=2&rft.spage=680&rft.epage=691&rft.pages=680-691&rft.issn=1226-7988&rft.eissn=1976-3808&rft_id=info:doi/10.1007/s12205-020-0806-7&rft_dat=%3Cproquest_nrf_k%3E2919609228%3C/proquest_nrf_k%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c402t-53e47656ef61b4cddd68fac2e58ba0c40fedb5956c94093c61a1cee00744dfab3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2919609228&rft_id=info:pmid/&rfr_iscdi=true