Loading…

Thermodynamic Calculations and Parameter Variations for Improving the Extraction Efficiency of Dy in Ternary Alloy System

The extraction behavior of dysprosium (Dy) in a rapidly solidified Dy–Fe–B alloy system consisting of Dy 2 Fe 14 B and Dy 6 Fe 23 phases was investigated using the liquid metal extraction (LME) process. Liquid magnesium (Mg) was selected as the solvent metal in LME because it forms intermetallic com...

Full description

Saved in:
Bibliographic Details
Published in:Metals and materials international 2021, 27(3), , pp.538-544
Main Authors: Nam, Sun-Woo, Park, Sang-Min, Kim, Do-Hyang, Kim, Taek-Soo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c353t-db31a612c29bbfa50189fb76f06b5f8b2fe32fa8623bf27e5fbfddc55582c5e3
cites cdi_FETCH-LOGICAL-c353t-db31a612c29bbfa50189fb76f06b5f8b2fe32fa8623bf27e5fbfddc55582c5e3
container_end_page 544
container_issue 3
container_start_page 538
container_title Metals and materials international
container_volume 27
creator Nam, Sun-Woo
Park, Sang-Min
Kim, Do-Hyang
Kim, Taek-Soo
description The extraction behavior of dysprosium (Dy) in a rapidly solidified Dy–Fe–B alloy system consisting of Dy 2 Fe 14 B and Dy 6 Fe 23 phases was investigated using the liquid metal extraction (LME) process. Liquid magnesium (Mg) was selected as the solvent metal in LME because it forms intermetallic compounds with Dy but not with iron (Fe) and boron (B) in this process. The diffusion behavior of Dy was estimated through thermodynamic calculations and subsequently confirmed by process parameters such as temperature and reaction time. As the temperature increases, the extraction rate increases and the maximum extraction efficiency is about 74% Dy for 1 h at 1000 °C. As the reaction time increases, we achieved the maximum extraction efficiency of 95% Dy after 24 h at 900 °C. The factor affecting Dy extraction ratio up to 6 h is Dy 6 Fe 23 phase, after which the extraction mainly occurs in Dy 2 Fe 14 B phase. Furthermore, the diffusion behavior is described in detail with analysis based on microstructural and compositional properties. The effects of process parameters on extraction rate are also discussed. Graphic Abstract
doi_str_mv 10.1007/s12540-019-00605-8
format article
fullrecord <record><control><sourceid>proquest_nrf_k</sourceid><recordid>TN_cdi_nrf_kci_oai_kci_go_kr_ARTI_9760220</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2497164379</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-db31a612c29bbfa50189fb76f06b5f8b2fe32fa8623bf27e5fbfddc55582c5e3</originalsourceid><addsrcrecordid>eNp9kc1KxDAUhYMoOI6-gKuAKxfV_DRtsxzGUQcERYvbkKbJGG0TTTpi396MFdy5uhfudw73cAA4xegCI1ReRkxYjjKEeYZQgVhW7YEZQWnJcc73wQwzXmW8IPQQHMX4miBMMZmBsX7Rofft6GRvFVzKTm07OVjvIpSuhQ8yyF4POsBnGezvwfgA1_178J_WbeDwouHqawhS7a5wZYxVVjs1Qm_g1Qitg7UOToYRLrrOj_BpjIPuj8GBkV3UJ79zDurrVb28ze7ub9bLxV2mKKND1jYUywITRXjTGMkQrrhpysKgomGmaojRlBhZpWiNIaVmpjFtqxhjFVFM0zk4n2xdMOJNWeGl_ZkbL96CWDzWa8HLAhGCEns2sSnax1bHQbz6bfq8i4LkvMRFTkueKDJRKvgYgzbiPdg-xRMYiV0bYmpDpDbETxuiSiI6iWKC3UaHP-t_VN82qo7X</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2497164379</pqid></control><display><type>article</type><title>Thermodynamic Calculations and Parameter Variations for Improving the Extraction Efficiency of Dy in Ternary Alloy System</title><source>Springer Nature</source><creator>Nam, Sun-Woo ; Park, Sang-Min ; Kim, Do-Hyang ; Kim, Taek-Soo</creator><creatorcontrib>Nam, Sun-Woo ; Park, Sang-Min ; Kim, Do-Hyang ; Kim, Taek-Soo</creatorcontrib><description>The extraction behavior of dysprosium (Dy) in a rapidly solidified Dy–Fe–B alloy system consisting of Dy 2 Fe 14 B and Dy 6 Fe 23 phases was investigated using the liquid metal extraction (LME) process. Liquid magnesium (Mg) was selected as the solvent metal in LME because it forms intermetallic compounds with Dy but not with iron (Fe) and boron (B) in this process. The diffusion behavior of Dy was estimated through thermodynamic calculations and subsequently confirmed by process parameters such as temperature and reaction time. As the temperature increases, the extraction rate increases and the maximum extraction efficiency is about 74% Dy for 1 h at 1000 °C. As the reaction time increases, we achieved the maximum extraction efficiency of 95% Dy after 24 h at 900 °C. The factor affecting Dy extraction ratio up to 6 h is Dy 6 Fe 23 phase, after which the extraction mainly occurs in Dy 2 Fe 14 B phase. Furthermore, the diffusion behavior is described in detail with analysis based on microstructural and compositional properties. The effects of process parameters on extraction rate are also discussed. Graphic Abstract</description><identifier>ISSN: 1598-9623</identifier><identifier>EISSN: 2005-4149</identifier><identifier>DOI: 10.1007/s12540-019-00605-8</identifier><language>eng</language><publisher>Seoul: The Korean Institute of Metals and Materials</publisher><subject>Alloy systems ; Boron compounds ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Dysprosium base alloys ; Efficiency ; Engineering Thermodynamics ; Heat and Mass Transfer ; Intermetallic compounds ; Iron ; Liquid metal extraction ; Machines ; Magnesium ; Magnetic Materials ; Magnetism ; Manufacturing ; Materials Science ; Mathematical analysis ; Metallic Materials ; Process parameters ; Processes ; Rapid solidification ; Reaction time ; Solid Mechanics ; Ternary alloys ; 재료공학</subject><ispartof>Metals and Materials International, 2021, 27(3), , pp.538-544</ispartof><rights>The Korean Institute of Metals and Materials 2020</rights><rights>The Korean Institute of Metals and Materials 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-db31a612c29bbfa50189fb76f06b5f8b2fe32fa8623bf27e5fbfddc55582c5e3</citedby><cites>FETCH-LOGICAL-c353t-db31a612c29bbfa50189fb76f06b5f8b2fe32fa8623bf27e5fbfddc55582c5e3</cites><orcidid>0000-0002-0258-0526</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002691652$$DAccess content in National Research Foundation of Korea (NRF)$$Hfree_for_read</backlink></links><search><creatorcontrib>Nam, Sun-Woo</creatorcontrib><creatorcontrib>Park, Sang-Min</creatorcontrib><creatorcontrib>Kim, Do-Hyang</creatorcontrib><creatorcontrib>Kim, Taek-Soo</creatorcontrib><title>Thermodynamic Calculations and Parameter Variations for Improving the Extraction Efficiency of Dy in Ternary Alloy System</title><title>Metals and materials international</title><addtitle>Met. Mater. Int</addtitle><description>The extraction behavior of dysprosium (Dy) in a rapidly solidified Dy–Fe–B alloy system consisting of Dy 2 Fe 14 B and Dy 6 Fe 23 phases was investigated using the liquid metal extraction (LME) process. Liquid magnesium (Mg) was selected as the solvent metal in LME because it forms intermetallic compounds with Dy but not with iron (Fe) and boron (B) in this process. The diffusion behavior of Dy was estimated through thermodynamic calculations and subsequently confirmed by process parameters such as temperature and reaction time. As the temperature increases, the extraction rate increases and the maximum extraction efficiency is about 74% Dy for 1 h at 1000 °C. As the reaction time increases, we achieved the maximum extraction efficiency of 95% Dy after 24 h at 900 °C. The factor affecting Dy extraction ratio up to 6 h is Dy 6 Fe 23 phase, after which the extraction mainly occurs in Dy 2 Fe 14 B phase. Furthermore, the diffusion behavior is described in detail with analysis based on microstructural and compositional properties. The effects of process parameters on extraction rate are also discussed. Graphic Abstract</description><subject>Alloy systems</subject><subject>Boron compounds</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Dysprosium base alloys</subject><subject>Efficiency</subject><subject>Engineering Thermodynamics</subject><subject>Heat and Mass Transfer</subject><subject>Intermetallic compounds</subject><subject>Iron</subject><subject>Liquid metal extraction</subject><subject>Machines</subject><subject>Magnesium</subject><subject>Magnetic Materials</subject><subject>Magnetism</subject><subject>Manufacturing</subject><subject>Materials Science</subject><subject>Mathematical analysis</subject><subject>Metallic Materials</subject><subject>Process parameters</subject><subject>Processes</subject><subject>Rapid solidification</subject><subject>Reaction time</subject><subject>Solid Mechanics</subject><subject>Ternary alloys</subject><subject>재료공학</subject><issn>1598-9623</issn><issn>2005-4149</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kc1KxDAUhYMoOI6-gKuAKxfV_DRtsxzGUQcERYvbkKbJGG0TTTpi396MFdy5uhfudw73cAA4xegCI1ReRkxYjjKEeYZQgVhW7YEZQWnJcc73wQwzXmW8IPQQHMX4miBMMZmBsX7Rofft6GRvFVzKTm07OVjvIpSuhQ8yyF4POsBnGezvwfgA1_178J_WbeDwouHqawhS7a5wZYxVVjs1Qm_g1Qitg7UOToYRLrrOj_BpjIPuj8GBkV3UJ79zDurrVb28ze7ub9bLxV2mKKND1jYUywITRXjTGMkQrrhpysKgomGmaojRlBhZpWiNIaVmpjFtqxhjFVFM0zk4n2xdMOJNWeGl_ZkbL96CWDzWa8HLAhGCEns2sSnax1bHQbz6bfq8i4LkvMRFTkueKDJRKvgYgzbiPdg-xRMYiV0bYmpDpDbETxuiSiI6iWKC3UaHP-t_VN82qo7X</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Nam, Sun-Woo</creator><creator>Park, Sang-Min</creator><creator>Kim, Do-Hyang</creator><creator>Kim, Taek-Soo</creator><general>The Korean Institute of Metals and Materials</general><general>Springer Nature B.V</general><general>대한금속·재료학회</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>ACYCR</scope><orcidid>https://orcid.org/0000-0002-0258-0526</orcidid></search><sort><creationdate>20210301</creationdate><title>Thermodynamic Calculations and Parameter Variations for Improving the Extraction Efficiency of Dy in Ternary Alloy System</title><author>Nam, Sun-Woo ; Park, Sang-Min ; Kim, Do-Hyang ; Kim, Taek-Soo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-db31a612c29bbfa50189fb76f06b5f8b2fe32fa8623bf27e5fbfddc55582c5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alloy systems</topic><topic>Boron compounds</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Dysprosium base alloys</topic><topic>Efficiency</topic><topic>Engineering Thermodynamics</topic><topic>Heat and Mass Transfer</topic><topic>Intermetallic compounds</topic><topic>Iron</topic><topic>Liquid metal extraction</topic><topic>Machines</topic><topic>Magnesium</topic><topic>Magnetic Materials</topic><topic>Magnetism</topic><topic>Manufacturing</topic><topic>Materials Science</topic><topic>Mathematical analysis</topic><topic>Metallic Materials</topic><topic>Process parameters</topic><topic>Processes</topic><topic>Rapid solidification</topic><topic>Reaction time</topic><topic>Solid Mechanics</topic><topic>Ternary alloys</topic><topic>재료공학</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nam, Sun-Woo</creatorcontrib><creatorcontrib>Park, Sang-Min</creatorcontrib><creatorcontrib>Kim, Do-Hyang</creatorcontrib><creatorcontrib>Kim, Taek-Soo</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Korean Citation Index</collection><jtitle>Metals and materials international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nam, Sun-Woo</au><au>Park, Sang-Min</au><au>Kim, Do-Hyang</au><au>Kim, Taek-Soo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermodynamic Calculations and Parameter Variations for Improving the Extraction Efficiency of Dy in Ternary Alloy System</atitle><jtitle>Metals and materials international</jtitle><stitle>Met. Mater. Int</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>27</volume><issue>3</issue><spage>538</spage><epage>544</epage><pages>538-544</pages><issn>1598-9623</issn><eissn>2005-4149</eissn><abstract>The extraction behavior of dysprosium (Dy) in a rapidly solidified Dy–Fe–B alloy system consisting of Dy 2 Fe 14 B and Dy 6 Fe 23 phases was investigated using the liquid metal extraction (LME) process. Liquid magnesium (Mg) was selected as the solvent metal in LME because it forms intermetallic compounds with Dy but not with iron (Fe) and boron (B) in this process. The diffusion behavior of Dy was estimated through thermodynamic calculations and subsequently confirmed by process parameters such as temperature and reaction time. As the temperature increases, the extraction rate increases and the maximum extraction efficiency is about 74% Dy for 1 h at 1000 °C. As the reaction time increases, we achieved the maximum extraction efficiency of 95% Dy after 24 h at 900 °C. The factor affecting Dy extraction ratio up to 6 h is Dy 6 Fe 23 phase, after which the extraction mainly occurs in Dy 2 Fe 14 B phase. Furthermore, the diffusion behavior is described in detail with analysis based on microstructural and compositional properties. The effects of process parameters on extraction rate are also discussed. Graphic Abstract</abstract><cop>Seoul</cop><pub>The Korean Institute of Metals and Materials</pub><doi>10.1007/s12540-019-00605-8</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-0258-0526</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1598-9623
ispartof Metals and Materials International, 2021, 27(3), , pp.538-544
issn 1598-9623
2005-4149
language eng
recordid cdi_nrf_kci_oai_kci_go_kr_ARTI_9760220
source Springer Nature
subjects Alloy systems
Boron compounds
Characterization and Evaluation of Materials
Chemistry and Materials Science
Dysprosium base alloys
Efficiency
Engineering Thermodynamics
Heat and Mass Transfer
Intermetallic compounds
Iron
Liquid metal extraction
Machines
Magnesium
Magnetic Materials
Magnetism
Manufacturing
Materials Science
Mathematical analysis
Metallic Materials
Process parameters
Processes
Rapid solidification
Reaction time
Solid Mechanics
Ternary alloys
재료공학
title Thermodynamic Calculations and Parameter Variations for Improving the Extraction Efficiency of Dy in Ternary Alloy System
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T22%3A18%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_nrf_k&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermodynamic%20Calculations%20and%20Parameter%20Variations%20for%20Improving%20the%20Extraction%20Efficiency%20of%20Dy%20in%20Ternary%20Alloy%20System&rft.jtitle=Metals%20and%20materials%20international&rft.au=Nam,%20Sun-Woo&rft.date=2021-03-01&rft.volume=27&rft.issue=3&rft.spage=538&rft.epage=544&rft.pages=538-544&rft.issn=1598-9623&rft.eissn=2005-4149&rft_id=info:doi/10.1007/s12540-019-00605-8&rft_dat=%3Cproquest_nrf_k%3E2497164379%3C/proquest_nrf_k%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c353t-db31a612c29bbfa50189fb76f06b5f8b2fe32fa8623bf27e5fbfddc55582c5e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2497164379&rft_id=info:pmid/&rfr_iscdi=true