Loading…

Development of risk assessment framework and the case study for a spent fuel pool of a nuclear power plant

A Spent Fuel Pool (SFP) is designed to store spent fuel assemblies in the pool. And, a SFP cooling and cleanup system cools the SFP coolant through a heat exchanger which exchanges heat with component cooling water. If the cooling system fails or interfacing pipe (e.g., suction or discharge pipe) br...

Full description

Saved in:
Bibliographic Details
Published in:Nuclear engineering and technology 2021, 53(4), , pp.1127-1133
Main Authors: Choi, Jintae, Seok, Ho
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A Spent Fuel Pool (SFP) is designed to store spent fuel assemblies in the pool. And, a SFP cooling and cleanup system cools the SFP coolant through a heat exchanger which exchanges heat with component cooling water. If the cooling system fails or interfacing pipe (e.g., suction or discharge pipe) breaks, the cooling function may be lost, probably leading to fuel damage. In order to prevent such an incident, it is required to properly cool the spent fuel assemblies in the SFP by either recovering the cooling system or injecting water into the SFP. Probabilistic safety assessment (PSA) is a good tool to assess the SFP risk when an initiating event for the SFP occurs. Since PSA has been focused on reactor-side so far, it is required to study on the framework of PSA approach for SFP and identify the key factors in terms of fuel damage frequency (FDF) through a case study. In this study, therefore, a case study of SFP-PSA on the basis of design information of APR-1400 has been conducted quantitatively, and several sensitivity analyses have been conducted to understand the impact of the key factors on FDF.
ISSN:1738-5733
2234-358X
DOI:10.1016/j.net.2020.09.011