Loading…
Recent advances in CRISPR technologies for genome editing
The discovery of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) system, and its development into a set of powerful tools for manipulating the genome, has revolutionized genome editing. Precise, targeted CRISPR/Cas-based genome editing has become th...
Saved in:
Published in: | Archives of pharmacal research 2021, 44(6), , pp.537-552 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The discovery of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) system, and its development into a set of powerful tools for manipulating the genome, has revolutionized genome editing. Precise, targeted CRISPR/Cas-based genome editing has become the most widely used platform in organisms ranging from plants to animals. The CRISPR/Cas system has been extensively modified to increase its efficiency and fidelity. In addition, the fusion of various protein motifs to Cas effector proteins has facilitated diverse set of genetic manipulations, such as base editing, transposition, recombination, and epigenetic regulation. The CRISPR/Cas system is undergoing continuous development to overcome current limitations, including off-target effects, narrow targeting scope, and issues associated with the delivery of CRISPR components for genome engineering and therapeutic approaches. Here, we review recent progress in a diverse array of CRISPR/Cas-based tools. We also describe limitations and concerns related to the use of CRISPR/Cas technologies. |
---|---|
ISSN: | 0253-6269 1976-3786 |
DOI: | 10.1007/s12272-021-01336-4 |