Loading…

FD-StackGAN: Face De-occlusion Using Stacked Generative Adversarial Networks

It has been widely acknowledged that occlusion impairments adversely distress many face recognition algorithms' performance. Therefore, it is crucial to solving the problem of face image occlusion in face recognition. To solve the image occlusion problem in face recognition, this paper aims to...

Full description

Saved in:
Bibliographic Details
Published in:KSII transactions on Internet and information systems 2021, 15(7), , pp.2547-2567
Main Authors: Jabbar, Abdul, Li, Xi, Iqbal, M. Munawwar, Malik, Arif Jamal
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 2567
container_issue 7
container_start_page 2547
container_title KSII transactions on Internet and information systems
container_volume 15
creator Jabbar, Abdul
Li, Xi
Iqbal, M. Munawwar
Malik, Arif Jamal
description It has been widely acknowledged that occlusion impairments adversely distress many face recognition algorithms' performance. Therefore, it is crucial to solving the problem of face image occlusion in face recognition. To solve the image occlusion problem in face recognition, this paper aims to automatically de-occlude the human face majority or discriminative regions to improve face recognition performance. To achieve this, we decompose the generative process into two key stages and employ a separate generative adversarial network (GAN)-based network in both stages. The first stage generates an initial coarse face image without an occlusion mask. The second stage refines the result from the first stage by forcing it closer to real face images or ground truth. To increase the performance and minimize the artifacts in the generated result, a new refine loss (e.g., reconstruction loss, perceptual loss, and adversarial loss) is used to determine all differences between the generated de-occluded face image and ground truth. Furthermore, we build occluded face images and corresponding occlusion-free face images dataset. We trained our model on this new dataset and later tested it on real-world face images. The experiment results (qualitative and quantitative) and the comparative study confirm the robustness and effectiveness of the proposed work in removing challenging occlusion masks with various structures, sizes, shapes, types, and positions.
doi_str_mv 10.3837/tiis.2021.07.014
format article
fullrecord <record><control><sourceid>gale_nrf_k</sourceid><recordid>TN_cdi_nrf_kci_oai_kci_go_kr_ARTI_9849002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A672359539</galeid><kiss_id>3897816</kiss_id><sourcerecordid>A672359539</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-feeab72e11be4f024e2f0bdbd42baa85c9d05de95834cb7ab18c6f0aaa4d6b0a3</originalsourceid><addsrcrecordid>eNptkctLxDAQxosoKOpd8FIQDx5ak_SR1FtRd30sCj7OYZJMltBuK0lV_O9tXREFGYYZht83DPNF0QElaSYyfjo4F1JGGE0JTwnNN6IdWvEy4YzzzV_9drQfglOEMsHKXIidaDG7SB4H0M28vjuLZ6AxvsCk17p9Da7v4ufgumX8RaCJ59ihh8G9YVybN_QBvIM2vsPhvfdN2Iu2LLQB97_rbvQ8u3w6v0oW9_Pr83qR6ExUQ2IRQXGGlCrMLWE5MkuUUSZnCkAUujKkMFgVIsu14qCo0KUlAJCbUhHIdqOT9d7OW9loJ3twX3XZy8bL-uHpWlYirwhhI3u8ZhsXBic7E1p5U9_eT99iGS-Kqphy5I7W3BJalK6z_eBBr1zQsi45yyamGqn0H2oMgyun-w6tG-d_BGQt0L4PwaOVL96twH9ISuTknZy8k9M1knA5ejdKDn8uDj_4-DkuaJl9AuyTkrU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>FD-StackGAN: Face De-occlusion Using Stacked Generative Adversarial Networks</title><source>EZB Electronic Journals Library</source><creator>Jabbar, Abdul ; Li, Xi ; Iqbal, M. Munawwar ; Malik, Arif Jamal</creator><creatorcontrib>Jabbar, Abdul ; Li, Xi ; Iqbal, M. Munawwar ; Malik, Arif Jamal</creatorcontrib><description>It has been widely acknowledged that occlusion impairments adversely distress many face recognition algorithms' performance. Therefore, it is crucial to solving the problem of face image occlusion in face recognition. To solve the image occlusion problem in face recognition, this paper aims to automatically de-occlude the human face majority or discriminative regions to improve face recognition performance. To achieve this, we decompose the generative process into two key stages and employ a separate generative adversarial network (GAN)-based network in both stages. The first stage generates an initial coarse face image without an occlusion mask. The second stage refines the result from the first stage by forcing it closer to real face images or ground truth. To increase the performance and minimize the artifacts in the generated result, a new refine loss (e.g., reconstruction loss, perceptual loss, and adversarial loss) is used to determine all differences between the generated de-occluded face image and ground truth. Furthermore, we build occluded face images and corresponding occlusion-free face images dataset. We trained our model on this new dataset and later tested it on real-world face images. The experiment results (qualitative and quantitative) and the comparative study confirm the robustness and effectiveness of the proposed work in removing challenging occlusion masks with various structures, sizes, shapes, types, and positions.</description><identifier>ISSN: 1976-7277</identifier><identifier>EISSN: 1976-7277</identifier><identifier>DOI: 10.3837/tiis.2021.07.014</identifier><language>eng</language><publisher>한국인터넷정보학회</publisher><subject>Algorithms ; GAN ; Generative adversarial network ; Image processing ; image reconstruction ; image restoration ; Methods ; occlusions mask removal ; 컴퓨터학</subject><ispartof>KSII Transactions on Internet and Information Systems, 2021, 15(7), , pp.2547-2567</ispartof><rights>COPYRIGHT 2021 KSII, the Korean Society for Internet Information</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002742484$$DAccess content in National Research Foundation of Korea (NRF)$$Hfree_for_read</backlink></links><search><creatorcontrib>Jabbar, Abdul</creatorcontrib><creatorcontrib>Li, Xi</creatorcontrib><creatorcontrib>Iqbal, M. Munawwar</creatorcontrib><creatorcontrib>Malik, Arif Jamal</creatorcontrib><title>FD-StackGAN: Face De-occlusion Using Stacked Generative Adversarial Networks</title><title>KSII transactions on Internet and information systems</title><addtitle>KSII Transactions on Internet and Information Systems (TIIS)</addtitle><description>It has been widely acknowledged that occlusion impairments adversely distress many face recognition algorithms' performance. Therefore, it is crucial to solving the problem of face image occlusion in face recognition. To solve the image occlusion problem in face recognition, this paper aims to automatically de-occlude the human face majority or discriminative regions to improve face recognition performance. To achieve this, we decompose the generative process into two key stages and employ a separate generative adversarial network (GAN)-based network in both stages. The first stage generates an initial coarse face image without an occlusion mask. The second stage refines the result from the first stage by forcing it closer to real face images or ground truth. To increase the performance and minimize the artifacts in the generated result, a new refine loss (e.g., reconstruction loss, perceptual loss, and adversarial loss) is used to determine all differences between the generated de-occluded face image and ground truth. Furthermore, we build occluded face images and corresponding occlusion-free face images dataset. We trained our model on this new dataset and later tested it on real-world face images. The experiment results (qualitative and quantitative) and the comparative study confirm the robustness and effectiveness of the proposed work in removing challenging occlusion masks with various structures, sizes, shapes, types, and positions.</description><subject>Algorithms</subject><subject>GAN</subject><subject>Generative adversarial network</subject><subject>Image processing</subject><subject>image reconstruction</subject><subject>image restoration</subject><subject>Methods</subject><subject>occlusions mask removal</subject><subject>컴퓨터학</subject><issn>1976-7277</issn><issn>1976-7277</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNptkctLxDAQxosoKOpd8FIQDx5ak_SR1FtRd30sCj7OYZJMltBuK0lV_O9tXREFGYYZht83DPNF0QElaSYyfjo4F1JGGE0JTwnNN6IdWvEy4YzzzV_9drQfglOEMsHKXIidaDG7SB4H0M28vjuLZ6AxvsCk17p9Da7v4ufgumX8RaCJ59ihh8G9YVybN_QBvIM2vsPhvfdN2Iu2LLQB97_rbvQ8u3w6v0oW9_Pr83qR6ExUQ2IRQXGGlCrMLWE5MkuUUSZnCkAUujKkMFgVIsu14qCo0KUlAJCbUhHIdqOT9d7OW9loJ3twX3XZy8bL-uHpWlYirwhhI3u8ZhsXBic7E1p5U9_eT99iGS-Kqphy5I7W3BJalK6z_eBBr1zQsi45yyamGqn0H2oMgyun-w6tG-d_BGQt0L4PwaOVL96twH9ISuTknZy8k9M1knA5ejdKDn8uDj_4-DkuaJl9AuyTkrU</recordid><startdate>20210731</startdate><enddate>20210731</enddate><creator>Jabbar, Abdul</creator><creator>Li, Xi</creator><creator>Iqbal, M. Munawwar</creator><creator>Malik, Arif Jamal</creator><general>한국인터넷정보학회</general><general>KSII, the Korean Society for Internet Information</general><scope>HZB</scope><scope>Q5X</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JDI</scope><scope>ACYCR</scope></search><sort><creationdate>20210731</creationdate><title>FD-StackGAN: Face De-occlusion Using Stacked Generative Adversarial Networks</title><author>Jabbar, Abdul ; Li, Xi ; Iqbal, M. Munawwar ; Malik, Arif Jamal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-feeab72e11be4f024e2f0bdbd42baa85c9d05de95834cb7ab18c6f0aaa4d6b0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>GAN</topic><topic>Generative adversarial network</topic><topic>Image processing</topic><topic>image reconstruction</topic><topic>image restoration</topic><topic>Methods</topic><topic>occlusions mask removal</topic><topic>컴퓨터학</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jabbar, Abdul</creatorcontrib><creatorcontrib>Li, Xi</creatorcontrib><creatorcontrib>Iqbal, M. Munawwar</creatorcontrib><creatorcontrib>Malik, Arif Jamal</creatorcontrib><collection>KISS</collection><collection>Korean Studies Information Service System (KISS) B-Type</collection><collection>CrossRef</collection><collection>KoreaScience (Open Access)</collection><collection>Korean Citation Index</collection><jtitle>KSII transactions on Internet and information systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jabbar, Abdul</au><au>Li, Xi</au><au>Iqbal, M. Munawwar</au><au>Malik, Arif Jamal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FD-StackGAN: Face De-occlusion Using Stacked Generative Adversarial Networks</atitle><jtitle>KSII transactions on Internet and information systems</jtitle><addtitle>KSII Transactions on Internet and Information Systems (TIIS)</addtitle><date>2021-07-31</date><risdate>2021</risdate><volume>15</volume><issue>7</issue><spage>2547</spage><epage>2567</epage><pages>2547-2567</pages><issn>1976-7277</issn><eissn>1976-7277</eissn><abstract>It has been widely acknowledged that occlusion impairments adversely distress many face recognition algorithms' performance. Therefore, it is crucial to solving the problem of face image occlusion in face recognition. To solve the image occlusion problem in face recognition, this paper aims to automatically de-occlude the human face majority or discriminative regions to improve face recognition performance. To achieve this, we decompose the generative process into two key stages and employ a separate generative adversarial network (GAN)-based network in both stages. The first stage generates an initial coarse face image without an occlusion mask. The second stage refines the result from the first stage by forcing it closer to real face images or ground truth. To increase the performance and minimize the artifacts in the generated result, a new refine loss (e.g., reconstruction loss, perceptual loss, and adversarial loss) is used to determine all differences between the generated de-occluded face image and ground truth. Furthermore, we build occluded face images and corresponding occlusion-free face images dataset. We trained our model on this new dataset and later tested it on real-world face images. The experiment results (qualitative and quantitative) and the comparative study confirm the robustness and effectiveness of the proposed work in removing challenging occlusion masks with various structures, sizes, shapes, types, and positions.</abstract><pub>한국인터넷정보학회</pub><doi>10.3837/tiis.2021.07.014</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1976-7277
ispartof KSII Transactions on Internet and Information Systems, 2021, 15(7), , pp.2547-2567
issn 1976-7277
1976-7277
language eng
recordid cdi_nrf_kci_oai_kci_go_kr_ARTI_9849002
source EZB Electronic Journals Library
subjects Algorithms
GAN
Generative adversarial network
Image processing
image reconstruction
image restoration
Methods
occlusions mask removal
컴퓨터학
title FD-StackGAN: Face De-occlusion Using Stacked Generative Adversarial Networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A56%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_nrf_k&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FD-StackGAN:%20Face%20De-occlusion%20Using%20Stacked%20Generative%20Adversarial%20Networks&rft.jtitle=KSII%20transactions%20on%20Internet%20and%20information%20systems&rft.au=Jabbar,%20Abdul&rft.date=2021-07-31&rft.volume=15&rft.issue=7&rft.spage=2547&rft.epage=2567&rft.pages=2547-2567&rft.issn=1976-7277&rft.eissn=1976-7277&rft_id=info:doi/10.3837/tiis.2021.07.014&rft_dat=%3Cgale_nrf_k%3EA672359539%3C/gale_nrf_k%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c389t-feeab72e11be4f024e2f0bdbd42baa85c9d05de95834cb7ab18c6f0aaa4d6b0a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A672359539&rft_kiss_id=3897816&rfr_iscdi=true