Loading…

GNSS jamming detection of UAV ground control station using random matrix theory

Global navigation satellite systems (GNSS) are the main navigation and control systems in unmanned aerial vehicles (UAVs) and their ground control stations. Without the GNSS signals, the UAV and its ground control stations cannot follow the waypoints of the desired path in jamming environments. In t...

Full description

Saved in:
Bibliographic Details
Published in:ICT express 2021, 7(2), , pp.239-243
Main Authors: Sharifi-Tehrani, Omid, Sabahi, Mohamad F., Danaee, M.R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Global navigation satellite systems (GNSS) are the main navigation and control systems in unmanned aerial vehicles (UAVs) and their ground control stations. Without the GNSS signals, the UAV and its ground control stations cannot follow the waypoints of the desired path in jamming environments. In this paper, two new methods for detection of GNSS signal jamming attack for UAV ground control station are proposed based on random matrix theory. By using limiting distribution of mean vector and asymptotic behavior of the defined test statistic, a hypothesis test is introduced and evaluated to detect presence of jamming signal. Simulation results show that the proposed methods have significant performance in terms of detection and false alarm probabilities. Compared to existing methods, at low jamming-to-signal ratio (JSR), more than 2.5 dB improvement is achieved.
ISSN:2405-9595
2405-9595
DOI:10.1016/j.icte.2020.10.001