Loading…

A comprehensive study of the effects of long-term thermal aging on the fracture resistance of cast austenitic stainless steels

Loss of fracture resistance due to thermal aging degradation is a potential limiting factor affecting the long-term (80+ year) viability of nuclear reactors. To evaluate the effects of decades of aging in a practical time frame, accelerated aging must be employed prior to mechanical characterization...

Full description

Saved in:
Bibliographic Details
Published in:Nuclear engineering and technology 2022, 54(2), , pp.709-731
Main Authors: Collins, David A., Carter, Emily L., Lach, Timothy G., Byun, Thak Sang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Loss of fracture resistance due to thermal aging degradation is a potential limiting factor affecting the long-term (80+ year) viability of nuclear reactors. To evaluate the effects of decades of aging in a practical time frame, accelerated aging must be employed prior to mechanical characterization. In this study, a variety of chemically and microstructurally diverse austenitic stainless steels were aged between 0 and 30,000 h at 290–400 °C to simulate 0–80+ years of operation. Over 600 static fracture tests were carried out between room temperature and 400 °C. The results presented include selected J-R curves of each material as well as K0.2mm fracture toughness values mapped against aging condition and ferrite content in order to display any trends related to those variables. Results regarding differences in processing, optimal ferrite content under light aging, and the relationship between test temperature and Mo content were observed. Overall, it was found that both the ferrite volume fraction and molybdenum content had significant effects on thermal degradation susceptibility. It was determined that materials with >25 vol% ferrite are unlikely to be viable for 80 years, particularly if they have high Mo contents (>2 wt%), while materials less than 15 vol% ferrite are viable regardless of Mo content.
ISSN:1738-5733
2234-358X
DOI:10.1016/j.net.2021.08.022