Loading…

Nano-sized graphene oxide coated nanopillars on microgroove polymer arrays that enhance skeletal muscle cell differentiation

The degeneration or loss of skeletal muscles, which can be caused by traumatic injury or disease, impacts most aspects of human activity. Among various techniques reported to regenerate skeletal muscle tissue, controlling the external cellular environment has been proven effective in guiding muscle...

Full description

Saved in:
Bibliographic Details
Published in:Nano convergence 2021, 8(40), , pp.1-11
Main Authors: Choi, Hye Kyu, Kim, Cheol-Hwi, Lee, Sang Nam, Kim, Tae-Hyung, Oh, Byung-Keun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c641t-724a2107168ae9b83eb0902f5482c2cc06a8ec95ec65f298d1c42350ff3d56163
cites cdi_FETCH-LOGICAL-c641t-724a2107168ae9b83eb0902f5482c2cc06a8ec95ec65f298d1c42350ff3d56163
container_end_page 11
container_issue 1
container_start_page 40
container_title Nano convergence
container_volume 8
creator Choi, Hye Kyu
Kim, Cheol-Hwi
Lee, Sang Nam
Kim, Tae-Hyung
Oh, Byung-Keun
description The degeneration or loss of skeletal muscles, which can be caused by traumatic injury or disease, impacts most aspects of human activity. Among various techniques reported to regenerate skeletal muscle tissue, controlling the external cellular environment has been proven effective in guiding muscle differentiation. In this study, we report a nano-sized graphene oxide (sGO)-modified nanopillars on microgroove hybrid polymer array (NMPA) that effectively controls skeletal muscle cell differentiation. sGO-coated NMPA (sG-NMPA) were first fabricated by sequential laser interference lithography and microcontact printing methods. To compensate for the low adhesion property of polydimethylsiloxane (PDMS) used in this study, graphene oxide (GO), a proven cytophilic nanomaterial, was further modified. Among various sizes of GO, sGO (
doi_str_mv 10.1186/s40580-021-00291-6
format article
fullrecord <record><control><sourceid>proquest_nrf_k</sourceid><recordid>TN_cdi_nrf_kci_oai_kci_go_kr_ARTI_9930385</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_709d47edd19d4bc4a3ddd2383e4d3d5a</doaj_id><sourcerecordid>2606282035</sourcerecordid><originalsourceid>FETCH-LOGICAL-c641t-724a2107168ae9b83eb0902f5482c2cc06a8ec95ec65f298d1c42350ff3d56163</originalsourceid><addsrcrecordid>eNp9Uk1vEzEQXSEQrUr_AAdkiROHBX-t470gVRWUSBVIqJytiT27cbKxg72pCOqPx8mW0l44jeV58-bNzKuq14y-Z0yrD1nSRtOaclZTyltWq2fVKWetqhtJ5fNH75PqPOcVpZTNlJBMv6xOhNSKt408re6-Qoh19r_RkT7BdokBSfzlHRIbYSy_oQC2fhggZRID2XibYp9ivEWyjcN-g4lASrDPZFzCSDAsIVgkeY0DjjCQzS7bobDhMBDnuw4ThtHD6GN4Vb3oYMh4fh_Pqh-fP91cfqmvv13NLy-ua6skG-sZl8AZnTGlAduFFrigLeVdIzW33FqqQKNtG7Sq6XirHbOSi4Z2nXCNYkqcVe8m3pA6s7beRPDH2EezTubi-83ctK2gQjcFO5-wLsLKbJPfQNofC44fMfUG0ujLSGZGWydn6BwrcWElCOccF0WfdKUzFK6PE9d2t9igs2XwBMMT0qeZ4JdF063RSopy00Lw9p4gxZ87zKNZxV0KZVeGK6q45lQcJPMJVS6Tc8LuoQOj5mAWM5nFFLOYo1nMYSdvHmt7KPlrjQIQEyCXVOgx_ev9H9o_vQbMnQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2606282035</pqid></control><display><type>article</type><title>Nano-sized graphene oxide coated nanopillars on microgroove polymer arrays that enhance skeletal muscle cell differentiation</title><source>Publicly Available Content Database</source><source>Springer Nature - SpringerLink Journals - Fully Open Access</source><source>PubMed Central</source><creator>Choi, Hye Kyu ; Kim, Cheol-Hwi ; Lee, Sang Nam ; Kim, Tae-Hyung ; Oh, Byung-Keun</creator><creatorcontrib>Choi, Hye Kyu ; Kim, Cheol-Hwi ; Lee, Sang Nam ; Kim, Tae-Hyung ; Oh, Byung-Keun</creatorcontrib><description>The degeneration or loss of skeletal muscles, which can be caused by traumatic injury or disease, impacts most aspects of human activity. Among various techniques reported to regenerate skeletal muscle tissue, controlling the external cellular environment has been proven effective in guiding muscle differentiation. In this study, we report a nano-sized graphene oxide (sGO)-modified nanopillars on microgroove hybrid polymer array (NMPA) that effectively controls skeletal muscle cell differentiation. sGO-coated NMPA (sG-NMPA) were first fabricated by sequential laser interference lithography and microcontact printing methods. To compensate for the low adhesion property of polydimethylsiloxane (PDMS) used in this study, graphene oxide (GO), a proven cytophilic nanomaterial, was further modified. Among various sizes of GO, sGO (&lt; 10 nm) was found to be the most effective not only for coating the surface of the NM structure but also for enhancing the cell adhesion and spreading on the fabricated substrates. Remarkably, owing to the micro-sized line patterns that guide cellular morphology to an elongated shape and because of the presence of sGO-modified nanostructures, mouse myoblast cells (C2C12) were efficiently differentiated into skeletal muscle cells on the hybrid patterns, based on the myosin heavy chain expression levels. Therefore, the developed sGO coated polymeric hybrid pattern arrays can serve as a potential platform for rapid and highly efficient in vitro muscle cell generation.</description><identifier>ISSN: 2196-5404</identifier><identifier>EISSN: 2196-5404</identifier><identifier>DOI: 10.1186/s40580-021-00291-6</identifier><identifier>PMID: 34862954</identifier><language>eng</language><publisher>Singapore: Springer Singapore</publisher><subject>Arrays ; Cell adhesion ; Cell behavior ; Chemistry and Materials Science ; Degeneration ; Differentiation (biology) ; Graphene ; Materials Science ; Micro−nano hybrid pattern ; Muscles ; Musculoskeletal system ; Myogenesis ; Myosin ; Nano-sized graphene oxide ; Nanomaterials ; Nanoscale Science and Technology ; Nanotechnology ; Nanotechnology and Microengineering ; Polydimethylsiloxane ; Polymers ; Substrates ; 고분자공학</subject><ispartof>Nano Convergence, 2021, 8(40), , pp.1-11</ispartof><rights>The Author(s) 2021</rights><rights>2021. The Author(s).</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c641t-724a2107168ae9b83eb0902f5482c2cc06a8ec95ec65f298d1c42350ff3d56163</citedby><cites>FETCH-LOGICAL-c641t-724a2107168ae9b83eb0902f5482c2cc06a8ec95ec65f298d1c42350ff3d56163</cites><orcidid>0000-0002-3268-4705</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2606282035/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2606282035?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,25734,27905,27906,36993,44571,53772,53774,74875</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34862954$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002811122$$DAccess content in National Research Foundation of Korea (NRF)$$Hfree_for_read</backlink></links><search><creatorcontrib>Choi, Hye Kyu</creatorcontrib><creatorcontrib>Kim, Cheol-Hwi</creatorcontrib><creatorcontrib>Lee, Sang Nam</creatorcontrib><creatorcontrib>Kim, Tae-Hyung</creatorcontrib><creatorcontrib>Oh, Byung-Keun</creatorcontrib><title>Nano-sized graphene oxide coated nanopillars on microgroove polymer arrays that enhance skeletal muscle cell differentiation</title><title>Nano convergence</title><addtitle>Nano Convergence</addtitle><addtitle>Nano Converg</addtitle><description>The degeneration or loss of skeletal muscles, which can be caused by traumatic injury or disease, impacts most aspects of human activity. Among various techniques reported to regenerate skeletal muscle tissue, controlling the external cellular environment has been proven effective in guiding muscle differentiation. In this study, we report a nano-sized graphene oxide (sGO)-modified nanopillars on microgroove hybrid polymer array (NMPA) that effectively controls skeletal muscle cell differentiation. sGO-coated NMPA (sG-NMPA) were first fabricated by sequential laser interference lithography and microcontact printing methods. To compensate for the low adhesion property of polydimethylsiloxane (PDMS) used in this study, graphene oxide (GO), a proven cytophilic nanomaterial, was further modified. Among various sizes of GO, sGO (&lt; 10 nm) was found to be the most effective not only for coating the surface of the NM structure but also for enhancing the cell adhesion and spreading on the fabricated substrates. Remarkably, owing to the micro-sized line patterns that guide cellular morphology to an elongated shape and because of the presence of sGO-modified nanostructures, mouse myoblast cells (C2C12) were efficiently differentiated into skeletal muscle cells on the hybrid patterns, based on the myosin heavy chain expression levels. Therefore, the developed sGO coated polymeric hybrid pattern arrays can serve as a potential platform for rapid and highly efficient in vitro muscle cell generation.</description><subject>Arrays</subject><subject>Cell adhesion</subject><subject>Cell behavior</subject><subject>Chemistry and Materials Science</subject><subject>Degeneration</subject><subject>Differentiation (biology)</subject><subject>Graphene</subject><subject>Materials Science</subject><subject>Micro−nano hybrid pattern</subject><subject>Muscles</subject><subject>Musculoskeletal system</subject><subject>Myogenesis</subject><subject>Myosin</subject><subject>Nano-sized graphene oxide</subject><subject>Nanomaterials</subject><subject>Nanoscale Science and Technology</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Polydimethylsiloxane</subject><subject>Polymers</subject><subject>Substrates</subject><subject>고분자공학</subject><issn>2196-5404</issn><issn>2196-5404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9Uk1vEzEQXSEQrUr_AAdkiROHBX-t470gVRWUSBVIqJytiT27cbKxg72pCOqPx8mW0l44jeV58-bNzKuq14y-Z0yrD1nSRtOaclZTyltWq2fVKWetqhtJ5fNH75PqPOcVpZTNlJBMv6xOhNSKt408re6-Qoh19r_RkT7BdokBSfzlHRIbYSy_oQC2fhggZRID2XibYp9ivEWyjcN-g4lASrDPZFzCSDAsIVgkeY0DjjCQzS7bobDhMBDnuw4ThtHD6GN4Vb3oYMh4fh_Pqh-fP91cfqmvv13NLy-ua6skG-sZl8AZnTGlAduFFrigLeVdIzW33FqqQKNtG7Sq6XirHbOSi4Z2nXCNYkqcVe8m3pA6s7beRPDH2EezTubi-83ctK2gQjcFO5-wLsLKbJPfQNofC44fMfUG0ujLSGZGWydn6BwrcWElCOccF0WfdKUzFK6PE9d2t9igs2XwBMMT0qeZ4JdF063RSopy00Lw9p4gxZ87zKNZxV0KZVeGK6q45lQcJPMJVS6Tc8LuoQOj5mAWM5nFFLOYo1nMYSdvHmt7KPlrjQIQEyCXVOgx_ev9H9o_vQbMnQ</recordid><startdate>20211204</startdate><enddate>20211204</enddate><creator>Choi, Hye Kyu</creator><creator>Kim, Cheol-Hwi</creator><creator>Lee, Sang Nam</creator><creator>Kim, Tae-Hyung</creator><creator>Oh, Byung-Keun</creator><general>Springer Singapore</general><general>Springer Nature B.V</general><general>SpringerOpen</general><general>나노기술연구협의회</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope><scope>DOA</scope><scope>ACYCR</scope><orcidid>https://orcid.org/0000-0002-3268-4705</orcidid></search><sort><creationdate>20211204</creationdate><title>Nano-sized graphene oxide coated nanopillars on microgroove polymer arrays that enhance skeletal muscle cell differentiation</title><author>Choi, Hye Kyu ; Kim, Cheol-Hwi ; Lee, Sang Nam ; Kim, Tae-Hyung ; Oh, Byung-Keun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c641t-724a2107168ae9b83eb0902f5482c2cc06a8ec95ec65f298d1c42350ff3d56163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Arrays</topic><topic>Cell adhesion</topic><topic>Cell behavior</topic><topic>Chemistry and Materials Science</topic><topic>Degeneration</topic><topic>Differentiation (biology)</topic><topic>Graphene</topic><topic>Materials Science</topic><topic>Micro−nano hybrid pattern</topic><topic>Muscles</topic><topic>Musculoskeletal system</topic><topic>Myogenesis</topic><topic>Myosin</topic><topic>Nano-sized graphene oxide</topic><topic>Nanomaterials</topic><topic>Nanoscale Science and Technology</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Polydimethylsiloxane</topic><topic>Polymers</topic><topic>Substrates</topic><topic>고분자공학</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, Hye Kyu</creatorcontrib><creatorcontrib>Kim, Cheol-Hwi</creatorcontrib><creatorcontrib>Lee, Sang Nam</creatorcontrib><creatorcontrib>Kim, Tae-Hyung</creatorcontrib><creatorcontrib>Oh, Byung-Keun</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>https://resources.nclive.org/materials</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><collection>Korean Citation Index</collection><jtitle>Nano convergence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Hye Kyu</au><au>Kim, Cheol-Hwi</au><au>Lee, Sang Nam</au><au>Kim, Tae-Hyung</au><au>Oh, Byung-Keun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nano-sized graphene oxide coated nanopillars on microgroove polymer arrays that enhance skeletal muscle cell differentiation</atitle><jtitle>Nano convergence</jtitle><stitle>Nano Convergence</stitle><addtitle>Nano Converg</addtitle><date>2021-12-04</date><risdate>2021</risdate><volume>8</volume><issue>1</issue><spage>40</spage><epage>11</epage><pages>40-11</pages><artnum>40</artnum><issn>2196-5404</issn><eissn>2196-5404</eissn><abstract>The degeneration or loss of skeletal muscles, which can be caused by traumatic injury or disease, impacts most aspects of human activity. Among various techniques reported to regenerate skeletal muscle tissue, controlling the external cellular environment has been proven effective in guiding muscle differentiation. In this study, we report a nano-sized graphene oxide (sGO)-modified nanopillars on microgroove hybrid polymer array (NMPA) that effectively controls skeletal muscle cell differentiation. sGO-coated NMPA (sG-NMPA) were first fabricated by sequential laser interference lithography and microcontact printing methods. To compensate for the low adhesion property of polydimethylsiloxane (PDMS) used in this study, graphene oxide (GO), a proven cytophilic nanomaterial, was further modified. Among various sizes of GO, sGO (&lt; 10 nm) was found to be the most effective not only for coating the surface of the NM structure but also for enhancing the cell adhesion and spreading on the fabricated substrates. Remarkably, owing to the micro-sized line patterns that guide cellular morphology to an elongated shape and because of the presence of sGO-modified nanostructures, mouse myoblast cells (C2C12) were efficiently differentiated into skeletal muscle cells on the hybrid patterns, based on the myosin heavy chain expression levels. Therefore, the developed sGO coated polymeric hybrid pattern arrays can serve as a potential platform for rapid and highly efficient in vitro muscle cell generation.</abstract><cop>Singapore</cop><pub>Springer Singapore</pub><pmid>34862954</pmid><doi>10.1186/s40580-021-00291-6</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3268-4705</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2196-5404
ispartof Nano Convergence, 2021, 8(40), , pp.1-11
issn 2196-5404
2196-5404
language eng
recordid cdi_nrf_kci_oai_kci_go_kr_ARTI_9930385
source Publicly Available Content Database; Springer Nature - SpringerLink Journals - Fully Open Access; PubMed Central
subjects Arrays
Cell adhesion
Cell behavior
Chemistry and Materials Science
Degeneration
Differentiation (biology)
Graphene
Materials Science
Micro−nano hybrid pattern
Muscles
Musculoskeletal system
Myogenesis
Myosin
Nano-sized graphene oxide
Nanomaterials
Nanoscale Science and Technology
Nanotechnology
Nanotechnology and Microengineering
Polydimethylsiloxane
Polymers
Substrates
고분자공학
title Nano-sized graphene oxide coated nanopillars on microgroove polymer arrays that enhance skeletal muscle cell differentiation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T15%3A13%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_nrf_k&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nano-sized%20graphene%20oxide%20coated%20nanopillars%20on%20microgroove%20polymer%20arrays%20that%20enhance%20skeletal%20muscle%20cell%20differentiation&rft.jtitle=Nano%20convergence&rft.au=Choi,%20Hye%20Kyu&rft.date=2021-12-04&rft.volume=8&rft.issue=1&rft.spage=40&rft.epage=11&rft.pages=40-11&rft.artnum=40&rft.issn=2196-5404&rft.eissn=2196-5404&rft_id=info:doi/10.1186/s40580-021-00291-6&rft_dat=%3Cproquest_nrf_k%3E2606282035%3C/proquest_nrf_k%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c641t-724a2107168ae9b83eb0902f5482c2cc06a8ec95ec65f298d1c42350ff3d56163%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2606282035&rft_id=info:pmid/34862954&rfr_iscdi=true