Loading…
Nano-sized graphene oxide coated nanopillars on microgroove polymer arrays that enhance skeletal muscle cell differentiation
The degeneration or loss of skeletal muscles, which can be caused by traumatic injury or disease, impacts most aspects of human activity. Among various techniques reported to regenerate skeletal muscle tissue, controlling the external cellular environment has been proven effective in guiding muscle...
Saved in:
Published in: | Nano convergence 2021, 8(40), , pp.1-11 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c641t-724a2107168ae9b83eb0902f5482c2cc06a8ec95ec65f298d1c42350ff3d56163 |
---|---|
cites | cdi_FETCH-LOGICAL-c641t-724a2107168ae9b83eb0902f5482c2cc06a8ec95ec65f298d1c42350ff3d56163 |
container_end_page | 11 |
container_issue | 1 |
container_start_page | 40 |
container_title | Nano convergence |
container_volume | 8 |
creator | Choi, Hye Kyu Kim, Cheol-Hwi Lee, Sang Nam Kim, Tae-Hyung Oh, Byung-Keun |
description | The degeneration or loss of skeletal muscles, which can be caused by traumatic injury or disease, impacts most aspects of human activity. Among various techniques reported to regenerate skeletal muscle tissue, controlling the external cellular environment has been proven effective in guiding muscle differentiation. In this study, we report a nano-sized graphene oxide (sGO)-modified nanopillars on microgroove hybrid polymer array (NMPA) that effectively controls skeletal muscle cell differentiation. sGO-coated NMPA (sG-NMPA) were first fabricated by sequential laser interference lithography and microcontact printing methods. To compensate for the low adhesion property of polydimethylsiloxane (PDMS) used in this study, graphene oxide (GO), a proven cytophilic nanomaterial, was further modified. Among various sizes of GO, sGO ( |
doi_str_mv | 10.1186/s40580-021-00291-6 |
format | article |
fullrecord | <record><control><sourceid>proquest_nrf_k</sourceid><recordid>TN_cdi_nrf_kci_oai_kci_go_kr_ARTI_9930385</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_709d47edd19d4bc4a3ddd2383e4d3d5a</doaj_id><sourcerecordid>2606282035</sourcerecordid><originalsourceid>FETCH-LOGICAL-c641t-724a2107168ae9b83eb0902f5482c2cc06a8ec95ec65f298d1c42350ff3d56163</originalsourceid><addsrcrecordid>eNp9Uk1vEzEQXSEQrUr_AAdkiROHBX-t470gVRWUSBVIqJytiT27cbKxg72pCOqPx8mW0l44jeV58-bNzKuq14y-Z0yrD1nSRtOaclZTyltWq2fVKWetqhtJ5fNH75PqPOcVpZTNlJBMv6xOhNSKt408re6-Qoh19r_RkT7BdokBSfzlHRIbYSy_oQC2fhggZRID2XibYp9ivEWyjcN-g4lASrDPZFzCSDAsIVgkeY0DjjCQzS7bobDhMBDnuw4ThtHD6GN4Vb3oYMh4fh_Pqh-fP91cfqmvv13NLy-ua6skG-sZl8AZnTGlAduFFrigLeVdIzW33FqqQKNtG7Sq6XirHbOSi4Z2nXCNYkqcVe8m3pA6s7beRPDH2EezTubi-83ctK2gQjcFO5-wLsLKbJPfQNofC44fMfUG0ujLSGZGWydn6BwrcWElCOccF0WfdKUzFK6PE9d2t9igs2XwBMMT0qeZ4JdF063RSopy00Lw9p4gxZ87zKNZxV0KZVeGK6q45lQcJPMJVS6Tc8LuoQOj5mAWM5nFFLOYo1nMYSdvHmt7KPlrjQIQEyCXVOgx_ev9H9o_vQbMnQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2606282035</pqid></control><display><type>article</type><title>Nano-sized graphene oxide coated nanopillars on microgroove polymer arrays that enhance skeletal muscle cell differentiation</title><source>Publicly Available Content Database</source><source>Springer Nature - SpringerLink Journals - Fully Open Access</source><source>PubMed Central</source><creator>Choi, Hye Kyu ; Kim, Cheol-Hwi ; Lee, Sang Nam ; Kim, Tae-Hyung ; Oh, Byung-Keun</creator><creatorcontrib>Choi, Hye Kyu ; Kim, Cheol-Hwi ; Lee, Sang Nam ; Kim, Tae-Hyung ; Oh, Byung-Keun</creatorcontrib><description>The degeneration or loss of skeletal muscles, which can be caused by traumatic injury or disease, impacts most aspects of human activity. Among various techniques reported to regenerate skeletal muscle tissue, controlling the external cellular environment has been proven effective in guiding muscle differentiation. In this study, we report a nano-sized graphene oxide (sGO)-modified nanopillars on microgroove hybrid polymer array (NMPA) that effectively controls skeletal muscle cell differentiation. sGO-coated NMPA (sG-NMPA) were first fabricated by sequential laser interference lithography and microcontact printing methods. To compensate for the low adhesion property of polydimethylsiloxane (PDMS) used in this study, graphene oxide (GO), a proven cytophilic nanomaterial, was further modified. Among various sizes of GO, sGO (< 10 nm) was found to be the most effective not only for coating the surface of the NM structure but also for enhancing the cell adhesion and spreading on the fabricated substrates. Remarkably, owing to the micro-sized line patterns that guide cellular morphology to an elongated shape and because of the presence of sGO-modified nanostructures, mouse myoblast cells (C2C12) were efficiently differentiated into skeletal muscle cells on the hybrid patterns, based on the myosin heavy chain expression levels. Therefore, the developed sGO coated polymeric hybrid pattern arrays can serve as a potential platform for rapid and highly efficient in vitro muscle cell generation.</description><identifier>ISSN: 2196-5404</identifier><identifier>EISSN: 2196-5404</identifier><identifier>DOI: 10.1186/s40580-021-00291-6</identifier><identifier>PMID: 34862954</identifier><language>eng</language><publisher>Singapore: Springer Singapore</publisher><subject>Arrays ; Cell adhesion ; Cell behavior ; Chemistry and Materials Science ; Degeneration ; Differentiation (biology) ; Graphene ; Materials Science ; Micro−nano hybrid pattern ; Muscles ; Musculoskeletal system ; Myogenesis ; Myosin ; Nano-sized graphene oxide ; Nanomaterials ; Nanoscale Science and Technology ; Nanotechnology ; Nanotechnology and Microengineering ; Polydimethylsiloxane ; Polymers ; Substrates ; 고분자공학</subject><ispartof>Nano Convergence, 2021, 8(40), , pp.1-11</ispartof><rights>The Author(s) 2021</rights><rights>2021. The Author(s).</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c641t-724a2107168ae9b83eb0902f5482c2cc06a8ec95ec65f298d1c42350ff3d56163</citedby><cites>FETCH-LOGICAL-c641t-724a2107168ae9b83eb0902f5482c2cc06a8ec95ec65f298d1c42350ff3d56163</cites><orcidid>0000-0002-3268-4705</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2606282035/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2606282035?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,25734,27905,27906,36993,44571,53772,53774,74875</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34862954$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002811122$$DAccess content in National Research Foundation of Korea (NRF)$$Hfree_for_read</backlink></links><search><creatorcontrib>Choi, Hye Kyu</creatorcontrib><creatorcontrib>Kim, Cheol-Hwi</creatorcontrib><creatorcontrib>Lee, Sang Nam</creatorcontrib><creatorcontrib>Kim, Tae-Hyung</creatorcontrib><creatorcontrib>Oh, Byung-Keun</creatorcontrib><title>Nano-sized graphene oxide coated nanopillars on microgroove polymer arrays that enhance skeletal muscle cell differentiation</title><title>Nano convergence</title><addtitle>Nano Convergence</addtitle><addtitle>Nano Converg</addtitle><description>The degeneration or loss of skeletal muscles, which can be caused by traumatic injury or disease, impacts most aspects of human activity. Among various techniques reported to regenerate skeletal muscle tissue, controlling the external cellular environment has been proven effective in guiding muscle differentiation. In this study, we report a nano-sized graphene oxide (sGO)-modified nanopillars on microgroove hybrid polymer array (NMPA) that effectively controls skeletal muscle cell differentiation. sGO-coated NMPA (sG-NMPA) were first fabricated by sequential laser interference lithography and microcontact printing methods. To compensate for the low adhesion property of polydimethylsiloxane (PDMS) used in this study, graphene oxide (GO), a proven cytophilic nanomaterial, was further modified. Among various sizes of GO, sGO (< 10 nm) was found to be the most effective not only for coating the surface of the NM structure but also for enhancing the cell adhesion and spreading on the fabricated substrates. Remarkably, owing to the micro-sized line patterns that guide cellular morphology to an elongated shape and because of the presence of sGO-modified nanostructures, mouse myoblast cells (C2C12) were efficiently differentiated into skeletal muscle cells on the hybrid patterns, based on the myosin heavy chain expression levels. Therefore, the developed sGO coated polymeric hybrid pattern arrays can serve as a potential platform for rapid and highly efficient in vitro muscle cell generation.</description><subject>Arrays</subject><subject>Cell adhesion</subject><subject>Cell behavior</subject><subject>Chemistry and Materials Science</subject><subject>Degeneration</subject><subject>Differentiation (biology)</subject><subject>Graphene</subject><subject>Materials Science</subject><subject>Micro−nano hybrid pattern</subject><subject>Muscles</subject><subject>Musculoskeletal system</subject><subject>Myogenesis</subject><subject>Myosin</subject><subject>Nano-sized graphene oxide</subject><subject>Nanomaterials</subject><subject>Nanoscale Science and Technology</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Polydimethylsiloxane</subject><subject>Polymers</subject><subject>Substrates</subject><subject>고분자공학</subject><issn>2196-5404</issn><issn>2196-5404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9Uk1vEzEQXSEQrUr_AAdkiROHBX-t470gVRWUSBVIqJytiT27cbKxg72pCOqPx8mW0l44jeV58-bNzKuq14y-Z0yrD1nSRtOaclZTyltWq2fVKWetqhtJ5fNH75PqPOcVpZTNlJBMv6xOhNSKt408re6-Qoh19r_RkT7BdokBSfzlHRIbYSy_oQC2fhggZRID2XibYp9ivEWyjcN-g4lASrDPZFzCSDAsIVgkeY0DjjCQzS7bobDhMBDnuw4ThtHD6GN4Vb3oYMh4fh_Pqh-fP91cfqmvv13NLy-ua6skG-sZl8AZnTGlAduFFrigLeVdIzW33FqqQKNtG7Sq6XirHbOSi4Z2nXCNYkqcVe8m3pA6s7beRPDH2EezTubi-83ctK2gQjcFO5-wLsLKbJPfQNofC44fMfUG0ujLSGZGWydn6BwrcWElCOccF0WfdKUzFK6PE9d2t9igs2XwBMMT0qeZ4JdF063RSopy00Lw9p4gxZ87zKNZxV0KZVeGK6q45lQcJPMJVS6Tc8LuoQOj5mAWM5nFFLOYo1nMYSdvHmt7KPlrjQIQEyCXVOgx_ev9H9o_vQbMnQ</recordid><startdate>20211204</startdate><enddate>20211204</enddate><creator>Choi, Hye Kyu</creator><creator>Kim, Cheol-Hwi</creator><creator>Lee, Sang Nam</creator><creator>Kim, Tae-Hyung</creator><creator>Oh, Byung-Keun</creator><general>Springer Singapore</general><general>Springer Nature B.V</general><general>SpringerOpen</general><general>나노기술연구협의회</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope><scope>DOA</scope><scope>ACYCR</scope><orcidid>https://orcid.org/0000-0002-3268-4705</orcidid></search><sort><creationdate>20211204</creationdate><title>Nano-sized graphene oxide coated nanopillars on microgroove polymer arrays that enhance skeletal muscle cell differentiation</title><author>Choi, Hye Kyu ; Kim, Cheol-Hwi ; Lee, Sang Nam ; Kim, Tae-Hyung ; Oh, Byung-Keun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c641t-724a2107168ae9b83eb0902f5482c2cc06a8ec95ec65f298d1c42350ff3d56163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Arrays</topic><topic>Cell adhesion</topic><topic>Cell behavior</topic><topic>Chemistry and Materials Science</topic><topic>Degeneration</topic><topic>Differentiation (biology)</topic><topic>Graphene</topic><topic>Materials Science</topic><topic>Micro−nano hybrid pattern</topic><topic>Muscles</topic><topic>Musculoskeletal system</topic><topic>Myogenesis</topic><topic>Myosin</topic><topic>Nano-sized graphene oxide</topic><topic>Nanomaterials</topic><topic>Nanoscale Science and Technology</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Polydimethylsiloxane</topic><topic>Polymers</topic><topic>Substrates</topic><topic>고분자공학</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, Hye Kyu</creatorcontrib><creatorcontrib>Kim, Cheol-Hwi</creatorcontrib><creatorcontrib>Lee, Sang Nam</creatorcontrib><creatorcontrib>Kim, Tae-Hyung</creatorcontrib><creatorcontrib>Oh, Byung-Keun</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>https://resources.nclive.org/materials</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><collection>Korean Citation Index</collection><jtitle>Nano convergence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Hye Kyu</au><au>Kim, Cheol-Hwi</au><au>Lee, Sang Nam</au><au>Kim, Tae-Hyung</au><au>Oh, Byung-Keun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nano-sized graphene oxide coated nanopillars on microgroove polymer arrays that enhance skeletal muscle cell differentiation</atitle><jtitle>Nano convergence</jtitle><stitle>Nano Convergence</stitle><addtitle>Nano Converg</addtitle><date>2021-12-04</date><risdate>2021</risdate><volume>8</volume><issue>1</issue><spage>40</spage><epage>11</epage><pages>40-11</pages><artnum>40</artnum><issn>2196-5404</issn><eissn>2196-5404</eissn><abstract>The degeneration or loss of skeletal muscles, which can be caused by traumatic injury or disease, impacts most aspects of human activity. Among various techniques reported to regenerate skeletal muscle tissue, controlling the external cellular environment has been proven effective in guiding muscle differentiation. In this study, we report a nano-sized graphene oxide (sGO)-modified nanopillars on microgroove hybrid polymer array (NMPA) that effectively controls skeletal muscle cell differentiation. sGO-coated NMPA (sG-NMPA) were first fabricated by sequential laser interference lithography and microcontact printing methods. To compensate for the low adhesion property of polydimethylsiloxane (PDMS) used in this study, graphene oxide (GO), a proven cytophilic nanomaterial, was further modified. Among various sizes of GO, sGO (< 10 nm) was found to be the most effective not only for coating the surface of the NM structure but also for enhancing the cell adhesion and spreading on the fabricated substrates. Remarkably, owing to the micro-sized line patterns that guide cellular morphology to an elongated shape and because of the presence of sGO-modified nanostructures, mouse myoblast cells (C2C12) were efficiently differentiated into skeletal muscle cells on the hybrid patterns, based on the myosin heavy chain expression levels. Therefore, the developed sGO coated polymeric hybrid pattern arrays can serve as a potential platform for rapid and highly efficient in vitro muscle cell generation.</abstract><cop>Singapore</cop><pub>Springer Singapore</pub><pmid>34862954</pmid><doi>10.1186/s40580-021-00291-6</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3268-4705</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2196-5404 |
ispartof | Nano Convergence, 2021, 8(40), , pp.1-11 |
issn | 2196-5404 2196-5404 |
language | eng |
recordid | cdi_nrf_kci_oai_kci_go_kr_ARTI_9930385 |
source | Publicly Available Content Database; Springer Nature - SpringerLink Journals - Fully Open Access; PubMed Central |
subjects | Arrays Cell adhesion Cell behavior Chemistry and Materials Science Degeneration Differentiation (biology) Graphene Materials Science Micro−nano hybrid pattern Muscles Musculoskeletal system Myogenesis Myosin Nano-sized graphene oxide Nanomaterials Nanoscale Science and Technology Nanotechnology Nanotechnology and Microengineering Polydimethylsiloxane Polymers Substrates 고분자공학 |
title | Nano-sized graphene oxide coated nanopillars on microgroove polymer arrays that enhance skeletal muscle cell differentiation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T15%3A13%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_nrf_k&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nano-sized%20graphene%20oxide%20coated%20nanopillars%20on%20microgroove%20polymer%20arrays%20that%20enhance%20skeletal%20muscle%20cell%20differentiation&rft.jtitle=Nano%20convergence&rft.au=Choi,%20Hye%20Kyu&rft.date=2021-12-04&rft.volume=8&rft.issue=1&rft.spage=40&rft.epage=11&rft.pages=40-11&rft.artnum=40&rft.issn=2196-5404&rft.eissn=2196-5404&rft_id=info:doi/10.1186/s40580-021-00291-6&rft_dat=%3Cproquest_nrf_k%3E2606282035%3C/proquest_nrf_k%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c641t-724a2107168ae9b83eb0902f5482c2cc06a8ec95ec65f298d1c42350ff3d56163%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2606282035&rft_id=info:pmid/34862954&rfr_iscdi=true |