Loading…

Surface modification of Fe2O3 and MgO nanoparticles with agrowastes for the treatment of chlorosis in Glycine max

Surface modification of nanoparticles for biological applications is receiving enormous interest among the research community due to the ability to alchemy the toxic nanoparticles into biocompatible compounds. In this study, the agrowastes of Moringa oleifera and Coriandrum sativum were used to surf...

Full description

Saved in:
Bibliographic Details
Published in:Nano convergence 2018, 5(23), , pp.1-8
Main Authors: Nazeer, Abdul Azeez, Udhayakumar, Sreelakshmi, Mani, Saranpriya, Dhanapal, Mothilal, Vijaykumar, Sudarshana Deepa
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Surface modification of nanoparticles for biological applications is receiving enormous interest among the research community due to the ability to alchemy the toxic nanoparticles into biocompatible compounds. In this study, the agrowastes of Moringa oleifera and Coriandrum sativum were used to surface modify the magnesium oxide nanoparticles and ferric oxide nanoparticles respectively. The agrowaste amended magnesium oxide nano particles (AMNP) and agrowaste amended ferric oxide nanoparticles (AFNP) were characterized using scanning electron microscope, X-ray diffractometer, Fourier transformed-infra red spectroscope to justify the formation and surface modification of nanoparticles with the organic functional groups from the agro wastes. The surface modified nano particles were tested for their biocompatibility and ability to treat the chlorosis in Glycine max . On comparison between the two metal based nanoparticles, AMNP exhibited better chlorosis treating ability than the AFNP. Both the nano particles showed increased potency at minimal amount, 30 μg and the higher concentrations till 125 μg exhibited down run of the potency which was again enhanced from 250 μg of nanoparticle treatment to plants. Further the surface modified nanoparticles were assessed for biocompatibility on human embryonic kidney (HEK-293) cell line which proved that the cell lines are non-toxic to normal human cells. The size of the particles and the concentration is suggested to be responsible for the effective chlorosis treatment and the organic functional groups responsible for the reduction of toxicity of the particles to the plants.
ISSN:2196-5404
2196-5404
DOI:10.1186/s40580-018-0155-0