Loading…

The Feasibility of Translaminar Screws in the Subaxial Cervical Spine: Computed Tomography and Cadaveric Validation

The use of translaminar screws may serve as a viable salvage method for complicated cases. To our understanding, the study of the feasibility of translaminar screw insertion in the actual entire subaxial cervical spine has not been carried out yet. The purpose of this study was to report the feasibi...

Full description

Saved in:
Bibliographic Details
Published in:Clinics in orthopedic surgery 2022, 14(1), , pp.105-111
Main Authors: Cho, Woojin, Le, Jason T, Shimer, Adam L, Werner, Brian C, Glaser, John A, Shen, Francis H
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The use of translaminar screws may serve as a viable salvage method for complicated cases. To our understanding, the study of the feasibility of translaminar screw insertion in the actual entire subaxial cervical spine has not been carried out yet. The purpose of this study was to report the feasibility of translaminar screw insertion in the entire subaxial cervical spine. Eighteen cadaveric spines were harvested from C3 to C7 and 1-mm computed tomography (CT) scans and three-dimensional reconstructions were created to exclude any bony anomaly. Thirty anatomically intact segments were collected (C3, 2; C4, 3; C5, 3; C6, 8; and C7, 14), and randomly arranged. Twenty-one segments were physically separated at each vertebral level (group S), while 9 segments were not separated from the vertebral column and left in situ (group N-S). CT measurement of lamina thickness was done for both group S and group N-S, and manual measurement of various length and angle was done for group S only. Using the trajectory proposed by the previous studies, translaminar screws were placed at each level. Screw diameter was the same or 0.5 mm larger than the proposed diameter based on CT measurement. Post-insertion CT was performed. Cortical breakage was checked either visually or by CT. When 1° and 2° screws of the same size were used, medial cortex breakage was found 13% and 33% of the time, respectively. C7 was relatively safer than the other levels. With larger-sized screws, medial cortex breakage was found in 47% and 46% of 1° and 2° screws, respectively. There were no facet injuries due to the screws in group N-S. Translaminar screw insertion in the subaxial cervical spine is feasible only when the lamina is thick enough to avoid any breakage that could lead to further complications. The authors do not recommend inserting translaminar screws in the subaxial cervical spine except in some salvage cases in the presence of a thick lamina.
ISSN:2005-291X
2005-4408
DOI:10.4055/cios21059