Loading…
Multiclass Classification Fault Diagnosis of Multirotor UAVs Utilizing a Deep Neural Network
A fault diagnosis algorithm using a deep neural network for an octocopter Unmanned Aerial Vehicle (UAV) is proposed. All eight rotors are considered in the multiclass classification fault diagnosis problem. The latest angle time history is fed to the proposed algorithm to determine rotor failure in...
Saved in:
Published in: | International journal of control, automation, and systems 2022, Automation, and Systems, 20(4), , pp.1316-1326 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c280t-98fecc7b58999faf1cc51cbbd86207779fd7434bc82233ce262b0e44295e098a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c280t-98fecc7b58999faf1cc51cbbd86207779fd7434bc82233ce262b0e44295e098a3 |
container_end_page | 1326 |
container_issue | 4 |
container_start_page | 1316 |
container_title | International journal of control, automation, and systems |
container_volume | 20 |
creator | Park, Jongho Jung, Yeondeuk Kim, Jong-Han |
description | A fault diagnosis algorithm using a deep neural network for an octocopter Unmanned Aerial Vehicle (UAV) is proposed. All eight rotors are considered in the multiclass classification fault diagnosis problem. The latest angle time history is fed to the proposed algorithm to determine rotor failure in real time. The normal case and fault case of each rotor are considered with appropriate output pairs to form a dataset. The proposed classifier can distinguish a failed rotor from the others with the help of different patterns of Euler angles during the training process. Two hidden layers are constructed using sigmoid and softmax activation functions. A generalized delta rule is adopted, and a stochastic gradient descent scheme is used to calculate the weight update of the neural network. The proposed fault diagnosis algorithm can be augmented to a fault-tolerant controller to construct an integrated system that involves solving a convex optimization problem. Numerical simulations are conducted to validate the performance of the proposed diagnostic algorithm. It is demonstrated that the performance can be adjusted by controlling the design parameters. |
doi_str_mv | 10.1007/s12555-021-0729-1 |
format | article |
fullrecord | <record><control><sourceid>proquest_nrf_k</sourceid><recordid>TN_cdi_nrf_kci_oai_kci_go_kr_ARTI_9940911</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2646578807</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-98fecc7b58999faf1cc51cbbd86207779fd7434bc82233ce262b0e44295e098a3</originalsourceid><addsrcrecordid>eNp1kEFLwzAYhoMoOKc_wFvAk4dqkjZNchyb08FUkM2TENIsKdlqM5MW0V9vuwqevHzv4Xu-l48HgEuMbjBC7DZiQilNEMEJYkQk-AiMCEI0yZAgx2CEqeBJnmX5KTiLcYtQnhPBRuDtsa0apysVI5z201mnVeN8DeeqW8GZU2Xto4vQW3iAg298gOvJa4TrxlXu29UlVHBmzB4-mTaoqovm04fdOTixqorm4jfHYD2_W00fkuXz_WI6WSaacNQkglujNSsoF0JYZbHWFOui2PCcIMaYsBuWpVmhOSFpqg3JSYFMlhFBDRJcpWNwPfTWwcqddtIrd8jSy12Qk5fVQgrRmcC4Y68Gdh_8R2tiI7e-DXX3niR5llPGOWIdhQdKBx9jMFbug3tX4UtiJHvhchAuO-GyFy77ZjLcxI6tSxP-mv8_-gEDk4KQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2646578807</pqid></control><display><type>article</type><title>Multiclass Classification Fault Diagnosis of Multirotor UAVs Utilizing a Deep Neural Network</title><source>Springer Link</source><creator>Park, Jongho ; Jung, Yeondeuk ; Kim, Jong-Han</creator><creatorcontrib>Park, Jongho ; Jung, Yeondeuk ; Kim, Jong-Han</creatorcontrib><description>A fault diagnosis algorithm using a deep neural network for an octocopter Unmanned Aerial Vehicle (UAV) is proposed. All eight rotors are considered in the multiclass classification fault diagnosis problem. The latest angle time history is fed to the proposed algorithm to determine rotor failure in real time. The normal case and fault case of each rotor are considered with appropriate output pairs to form a dataset. The proposed classifier can distinguish a failed rotor from the others with the help of different patterns of Euler angles during the training process. Two hidden layers are constructed using sigmoid and softmax activation functions. A generalized delta rule is adopted, and a stochastic gradient descent scheme is used to calculate the weight update of the neural network. The proposed fault diagnosis algorithm can be augmented to a fault-tolerant controller to construct an integrated system that involves solving a convex optimization problem. Numerical simulations are conducted to validate the performance of the proposed diagnostic algorithm. It is demonstrated that the performance can be adjusted by controlling the design parameters.</description><identifier>ISSN: 1598-6446</identifier><identifier>EISSN: 2005-4092</identifier><identifier>DOI: 10.1007/s12555-021-0729-1</identifier><language>eng</language><publisher>Bucheon / Seoul: Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers</publisher><subject>Algorithms ; Artificial neural networks ; Classification ; Computational geometry ; Control ; Convexity ; Design parameters ; Engineering ; Euler angles ; Fault diagnosis ; Fault tolerance ; Mechatronics ; Neural networks ; Optimization ; Regular Papers ; Robotics ; Rotors ; Unmanned aerial vehicles ; 제어계측공학</subject><ispartof>International Journal of Control, 2022, Automation, and Systems, 20(4), , pp.1316-1326</ispartof><rights>ICROS, KIEE and Springer 2022</rights><rights>ICROS, KIEE and Springer 2022.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c280t-98fecc7b58999faf1cc51cbbd86207779fd7434bc82233ce262b0e44295e098a3</citedby><cites>FETCH-LOGICAL-c280t-98fecc7b58999faf1cc51cbbd86207779fd7434bc82233ce262b0e44295e098a3</cites><orcidid>0000-0002-9030-0490 ; 0000-0003-2546-113X ; 0000-0001-5406-0306</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002821390$$DAccess content in National Research Foundation of Korea (NRF)$$Hfree_for_read</backlink></links><search><creatorcontrib>Park, Jongho</creatorcontrib><creatorcontrib>Jung, Yeondeuk</creatorcontrib><creatorcontrib>Kim, Jong-Han</creatorcontrib><title>Multiclass Classification Fault Diagnosis of Multirotor UAVs Utilizing a Deep Neural Network</title><title>International journal of control, automation, and systems</title><addtitle>Int. J. Control Autom. Syst</addtitle><description>A fault diagnosis algorithm using a deep neural network for an octocopter Unmanned Aerial Vehicle (UAV) is proposed. All eight rotors are considered in the multiclass classification fault diagnosis problem. The latest angle time history is fed to the proposed algorithm to determine rotor failure in real time. The normal case and fault case of each rotor are considered with appropriate output pairs to form a dataset. The proposed classifier can distinguish a failed rotor from the others with the help of different patterns of Euler angles during the training process. Two hidden layers are constructed using sigmoid and softmax activation functions. A generalized delta rule is adopted, and a stochastic gradient descent scheme is used to calculate the weight update of the neural network. The proposed fault diagnosis algorithm can be augmented to a fault-tolerant controller to construct an integrated system that involves solving a convex optimization problem. Numerical simulations are conducted to validate the performance of the proposed diagnostic algorithm. It is demonstrated that the performance can be adjusted by controlling the design parameters.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Classification</subject><subject>Computational geometry</subject><subject>Control</subject><subject>Convexity</subject><subject>Design parameters</subject><subject>Engineering</subject><subject>Euler angles</subject><subject>Fault diagnosis</subject><subject>Fault tolerance</subject><subject>Mechatronics</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Regular Papers</subject><subject>Robotics</subject><subject>Rotors</subject><subject>Unmanned aerial vehicles</subject><subject>제어계측공학</subject><issn>1598-6446</issn><issn>2005-4092</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLwzAYhoMoOKc_wFvAk4dqkjZNchyb08FUkM2TENIsKdlqM5MW0V9vuwqevHzv4Xu-l48HgEuMbjBC7DZiQilNEMEJYkQk-AiMCEI0yZAgx2CEqeBJnmX5KTiLcYtQnhPBRuDtsa0apysVI5z201mnVeN8DeeqW8GZU2Xto4vQW3iAg298gOvJa4TrxlXu29UlVHBmzB4-mTaoqovm04fdOTixqorm4jfHYD2_W00fkuXz_WI6WSaacNQkglujNSsoF0JYZbHWFOui2PCcIMaYsBuWpVmhOSFpqg3JSYFMlhFBDRJcpWNwPfTWwcqddtIrd8jSy12Qk5fVQgrRmcC4Y68Gdh_8R2tiI7e-DXX3niR5llPGOWIdhQdKBx9jMFbug3tX4UtiJHvhchAuO-GyFy77ZjLcxI6tSxP-mv8_-gEDk4KQ</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Park, Jongho</creator><creator>Jung, Yeondeuk</creator><creator>Kim, Jong-Han</creator><general>Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers</general><general>Springer Nature B.V</general><general>제어·로봇·시스템학회</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>ACYCR</scope><orcidid>https://orcid.org/0000-0002-9030-0490</orcidid><orcidid>https://orcid.org/0000-0003-2546-113X</orcidid><orcidid>https://orcid.org/0000-0001-5406-0306</orcidid></search><sort><creationdate>20220401</creationdate><title>Multiclass Classification Fault Diagnosis of Multirotor UAVs Utilizing a Deep Neural Network</title><author>Park, Jongho ; Jung, Yeondeuk ; Kim, Jong-Han</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-98fecc7b58999faf1cc51cbbd86207779fd7434bc82233ce262b0e44295e098a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Classification</topic><topic>Computational geometry</topic><topic>Control</topic><topic>Convexity</topic><topic>Design parameters</topic><topic>Engineering</topic><topic>Euler angles</topic><topic>Fault diagnosis</topic><topic>Fault tolerance</topic><topic>Mechatronics</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Regular Papers</topic><topic>Robotics</topic><topic>Rotors</topic><topic>Unmanned aerial vehicles</topic><topic>제어계측공학</topic><toplevel>online_resources</toplevel><creatorcontrib>Park, Jongho</creatorcontrib><creatorcontrib>Jung, Yeondeuk</creatorcontrib><creatorcontrib>Kim, Jong-Han</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Korean Citation Index</collection><jtitle>International journal of control, automation, and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Jongho</au><au>Jung, Yeondeuk</au><au>Kim, Jong-Han</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiclass Classification Fault Diagnosis of Multirotor UAVs Utilizing a Deep Neural Network</atitle><jtitle>International journal of control, automation, and systems</jtitle><stitle>Int. J. Control Autom. Syst</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>20</volume><issue>4</issue><spage>1316</spage><epage>1326</epage><pages>1316-1326</pages><issn>1598-6446</issn><eissn>2005-4092</eissn><abstract>A fault diagnosis algorithm using a deep neural network for an octocopter Unmanned Aerial Vehicle (UAV) is proposed. All eight rotors are considered in the multiclass classification fault diagnosis problem. The latest angle time history is fed to the proposed algorithm to determine rotor failure in real time. The normal case and fault case of each rotor are considered with appropriate output pairs to form a dataset. The proposed classifier can distinguish a failed rotor from the others with the help of different patterns of Euler angles during the training process. Two hidden layers are constructed using sigmoid and softmax activation functions. A generalized delta rule is adopted, and a stochastic gradient descent scheme is used to calculate the weight update of the neural network. The proposed fault diagnosis algorithm can be augmented to a fault-tolerant controller to construct an integrated system that involves solving a convex optimization problem. Numerical simulations are conducted to validate the performance of the proposed diagnostic algorithm. It is demonstrated that the performance can be adjusted by controlling the design parameters.</abstract><cop>Bucheon / Seoul</cop><pub>Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers</pub><doi>10.1007/s12555-021-0729-1</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9030-0490</orcidid><orcidid>https://orcid.org/0000-0003-2546-113X</orcidid><orcidid>https://orcid.org/0000-0001-5406-0306</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1598-6446 |
ispartof | International Journal of Control, 2022, Automation, and Systems, 20(4), , pp.1316-1326 |
issn | 1598-6446 2005-4092 |
language | eng |
recordid | cdi_nrf_kci_oai_kci_go_kr_ARTI_9940911 |
source | Springer Link |
subjects | Algorithms Artificial neural networks Classification Computational geometry Control Convexity Design parameters Engineering Euler angles Fault diagnosis Fault tolerance Mechatronics Neural networks Optimization Regular Papers Robotics Rotors Unmanned aerial vehicles 제어계측공학 |
title | Multiclass Classification Fault Diagnosis of Multirotor UAVs Utilizing a Deep Neural Network |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T20%3A45%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_nrf_k&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiclass%20Classification%20Fault%20Diagnosis%20of%20Multirotor%20UAVs%20Utilizing%20a%20Deep%20Neural%20Network&rft.jtitle=International%20journal%20of%20control,%20automation,%20and%20systems&rft.au=Park,%20Jongho&rft.date=2022-04-01&rft.volume=20&rft.issue=4&rft.spage=1316&rft.epage=1326&rft.pages=1316-1326&rft.issn=1598-6446&rft.eissn=2005-4092&rft_id=info:doi/10.1007/s12555-021-0729-1&rft_dat=%3Cproquest_nrf_k%3E2646578807%3C/proquest_nrf_k%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c280t-98fecc7b58999faf1cc51cbbd86207779fd7434bc82233ce262b0e44295e098a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2646578807&rft_id=info:pmid/&rfr_iscdi=true |