Loading…

Multiclass Classification Fault Diagnosis of Multirotor UAVs Utilizing a Deep Neural Network

A fault diagnosis algorithm using a deep neural network for an octocopter Unmanned Aerial Vehicle (UAV) is proposed. All eight rotors are considered in the multiclass classification fault diagnosis problem. The latest angle time history is fed to the proposed algorithm to determine rotor failure in...

Full description

Saved in:
Bibliographic Details
Published in:International journal of control, automation, and systems 2022, Automation, and Systems, 20(4), , pp.1316-1326
Main Authors: Park, Jongho, Jung, Yeondeuk, Kim, Jong-Han
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c280t-98fecc7b58999faf1cc51cbbd86207779fd7434bc82233ce262b0e44295e098a3
cites cdi_FETCH-LOGICAL-c280t-98fecc7b58999faf1cc51cbbd86207779fd7434bc82233ce262b0e44295e098a3
container_end_page 1326
container_issue 4
container_start_page 1316
container_title International journal of control, automation, and systems
container_volume 20
creator Park, Jongho
Jung, Yeondeuk
Kim, Jong-Han
description A fault diagnosis algorithm using a deep neural network for an octocopter Unmanned Aerial Vehicle (UAV) is proposed. All eight rotors are considered in the multiclass classification fault diagnosis problem. The latest angle time history is fed to the proposed algorithm to determine rotor failure in real time. The normal case and fault case of each rotor are considered with appropriate output pairs to form a dataset. The proposed classifier can distinguish a failed rotor from the others with the help of different patterns of Euler angles during the training process. Two hidden layers are constructed using sigmoid and softmax activation functions. A generalized delta rule is adopted, and a stochastic gradient descent scheme is used to calculate the weight update of the neural network. The proposed fault diagnosis algorithm can be augmented to a fault-tolerant controller to construct an integrated system that involves solving a convex optimization problem. Numerical simulations are conducted to validate the performance of the proposed diagnostic algorithm. It is demonstrated that the performance can be adjusted by controlling the design parameters.
doi_str_mv 10.1007/s12555-021-0729-1
format article
fullrecord <record><control><sourceid>proquest_nrf_k</sourceid><recordid>TN_cdi_nrf_kci_oai_kci_go_kr_ARTI_9940911</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2646578807</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-98fecc7b58999faf1cc51cbbd86207779fd7434bc82233ce262b0e44295e098a3</originalsourceid><addsrcrecordid>eNp1kEFLwzAYhoMoOKc_wFvAk4dqkjZNchyb08FUkM2TENIsKdlqM5MW0V9vuwqevHzv4Xu-l48HgEuMbjBC7DZiQilNEMEJYkQk-AiMCEI0yZAgx2CEqeBJnmX5KTiLcYtQnhPBRuDtsa0apysVI5z201mnVeN8DeeqW8GZU2Xto4vQW3iAg298gOvJa4TrxlXu29UlVHBmzB4-mTaoqovm04fdOTixqorm4jfHYD2_W00fkuXz_WI6WSaacNQkglujNSsoF0JYZbHWFOui2PCcIMaYsBuWpVmhOSFpqg3JSYFMlhFBDRJcpWNwPfTWwcqddtIrd8jSy12Qk5fVQgrRmcC4Y68Gdh_8R2tiI7e-DXX3niR5llPGOWIdhQdKBx9jMFbug3tX4UtiJHvhchAuO-GyFy77ZjLcxI6tSxP-mv8_-gEDk4KQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2646578807</pqid></control><display><type>article</type><title>Multiclass Classification Fault Diagnosis of Multirotor UAVs Utilizing a Deep Neural Network</title><source>Springer Link</source><creator>Park, Jongho ; Jung, Yeondeuk ; Kim, Jong-Han</creator><creatorcontrib>Park, Jongho ; Jung, Yeondeuk ; Kim, Jong-Han</creatorcontrib><description>A fault diagnosis algorithm using a deep neural network for an octocopter Unmanned Aerial Vehicle (UAV) is proposed. All eight rotors are considered in the multiclass classification fault diagnosis problem. The latest angle time history is fed to the proposed algorithm to determine rotor failure in real time. The normal case and fault case of each rotor are considered with appropriate output pairs to form a dataset. The proposed classifier can distinguish a failed rotor from the others with the help of different patterns of Euler angles during the training process. Two hidden layers are constructed using sigmoid and softmax activation functions. A generalized delta rule is adopted, and a stochastic gradient descent scheme is used to calculate the weight update of the neural network. The proposed fault diagnosis algorithm can be augmented to a fault-tolerant controller to construct an integrated system that involves solving a convex optimization problem. Numerical simulations are conducted to validate the performance of the proposed diagnostic algorithm. It is demonstrated that the performance can be adjusted by controlling the design parameters.</description><identifier>ISSN: 1598-6446</identifier><identifier>EISSN: 2005-4092</identifier><identifier>DOI: 10.1007/s12555-021-0729-1</identifier><language>eng</language><publisher>Bucheon / Seoul: Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers</publisher><subject>Algorithms ; Artificial neural networks ; Classification ; Computational geometry ; Control ; Convexity ; Design parameters ; Engineering ; Euler angles ; Fault diagnosis ; Fault tolerance ; Mechatronics ; Neural networks ; Optimization ; Regular Papers ; Robotics ; Rotors ; Unmanned aerial vehicles ; 제어계측공학</subject><ispartof>International Journal of Control, 2022, Automation, and Systems, 20(4), , pp.1316-1326</ispartof><rights>ICROS, KIEE and Springer 2022</rights><rights>ICROS, KIEE and Springer 2022.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c280t-98fecc7b58999faf1cc51cbbd86207779fd7434bc82233ce262b0e44295e098a3</citedby><cites>FETCH-LOGICAL-c280t-98fecc7b58999faf1cc51cbbd86207779fd7434bc82233ce262b0e44295e098a3</cites><orcidid>0000-0002-9030-0490 ; 0000-0003-2546-113X ; 0000-0001-5406-0306</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002821390$$DAccess content in National Research Foundation of Korea (NRF)$$Hfree_for_read</backlink></links><search><creatorcontrib>Park, Jongho</creatorcontrib><creatorcontrib>Jung, Yeondeuk</creatorcontrib><creatorcontrib>Kim, Jong-Han</creatorcontrib><title>Multiclass Classification Fault Diagnosis of Multirotor UAVs Utilizing a Deep Neural Network</title><title>International journal of control, automation, and systems</title><addtitle>Int. J. Control Autom. Syst</addtitle><description>A fault diagnosis algorithm using a deep neural network for an octocopter Unmanned Aerial Vehicle (UAV) is proposed. All eight rotors are considered in the multiclass classification fault diagnosis problem. The latest angle time history is fed to the proposed algorithm to determine rotor failure in real time. The normal case and fault case of each rotor are considered with appropriate output pairs to form a dataset. The proposed classifier can distinguish a failed rotor from the others with the help of different patterns of Euler angles during the training process. Two hidden layers are constructed using sigmoid and softmax activation functions. A generalized delta rule is adopted, and a stochastic gradient descent scheme is used to calculate the weight update of the neural network. The proposed fault diagnosis algorithm can be augmented to a fault-tolerant controller to construct an integrated system that involves solving a convex optimization problem. Numerical simulations are conducted to validate the performance of the proposed diagnostic algorithm. It is demonstrated that the performance can be adjusted by controlling the design parameters.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Classification</subject><subject>Computational geometry</subject><subject>Control</subject><subject>Convexity</subject><subject>Design parameters</subject><subject>Engineering</subject><subject>Euler angles</subject><subject>Fault diagnosis</subject><subject>Fault tolerance</subject><subject>Mechatronics</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Regular Papers</subject><subject>Robotics</subject><subject>Rotors</subject><subject>Unmanned aerial vehicles</subject><subject>제어계측공학</subject><issn>1598-6446</issn><issn>2005-4092</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLwzAYhoMoOKc_wFvAk4dqkjZNchyb08FUkM2TENIsKdlqM5MW0V9vuwqevHzv4Xu-l48HgEuMbjBC7DZiQilNEMEJYkQk-AiMCEI0yZAgx2CEqeBJnmX5KTiLcYtQnhPBRuDtsa0apysVI5z201mnVeN8DeeqW8GZU2Xto4vQW3iAg298gOvJa4TrxlXu29UlVHBmzB4-mTaoqovm04fdOTixqorm4jfHYD2_W00fkuXz_WI6WSaacNQkglujNSsoF0JYZbHWFOui2PCcIMaYsBuWpVmhOSFpqg3JSYFMlhFBDRJcpWNwPfTWwcqddtIrd8jSy12Qk5fVQgrRmcC4Y68Gdh_8R2tiI7e-DXX3niR5llPGOWIdhQdKBx9jMFbug3tX4UtiJHvhchAuO-GyFy77ZjLcxI6tSxP-mv8_-gEDk4KQ</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Park, Jongho</creator><creator>Jung, Yeondeuk</creator><creator>Kim, Jong-Han</creator><general>Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers</general><general>Springer Nature B.V</general><general>제어·로봇·시스템학회</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>ACYCR</scope><orcidid>https://orcid.org/0000-0002-9030-0490</orcidid><orcidid>https://orcid.org/0000-0003-2546-113X</orcidid><orcidid>https://orcid.org/0000-0001-5406-0306</orcidid></search><sort><creationdate>20220401</creationdate><title>Multiclass Classification Fault Diagnosis of Multirotor UAVs Utilizing a Deep Neural Network</title><author>Park, Jongho ; Jung, Yeondeuk ; Kim, Jong-Han</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-98fecc7b58999faf1cc51cbbd86207779fd7434bc82233ce262b0e44295e098a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Classification</topic><topic>Computational geometry</topic><topic>Control</topic><topic>Convexity</topic><topic>Design parameters</topic><topic>Engineering</topic><topic>Euler angles</topic><topic>Fault diagnosis</topic><topic>Fault tolerance</topic><topic>Mechatronics</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Regular Papers</topic><topic>Robotics</topic><topic>Rotors</topic><topic>Unmanned aerial vehicles</topic><topic>제어계측공학</topic><toplevel>online_resources</toplevel><creatorcontrib>Park, Jongho</creatorcontrib><creatorcontrib>Jung, Yeondeuk</creatorcontrib><creatorcontrib>Kim, Jong-Han</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Korean Citation Index</collection><jtitle>International journal of control, automation, and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Jongho</au><au>Jung, Yeondeuk</au><au>Kim, Jong-Han</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiclass Classification Fault Diagnosis of Multirotor UAVs Utilizing a Deep Neural Network</atitle><jtitle>International journal of control, automation, and systems</jtitle><stitle>Int. J. Control Autom. Syst</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>20</volume><issue>4</issue><spage>1316</spage><epage>1326</epage><pages>1316-1326</pages><issn>1598-6446</issn><eissn>2005-4092</eissn><abstract>A fault diagnosis algorithm using a deep neural network for an octocopter Unmanned Aerial Vehicle (UAV) is proposed. All eight rotors are considered in the multiclass classification fault diagnosis problem. The latest angle time history is fed to the proposed algorithm to determine rotor failure in real time. The normal case and fault case of each rotor are considered with appropriate output pairs to form a dataset. The proposed classifier can distinguish a failed rotor from the others with the help of different patterns of Euler angles during the training process. Two hidden layers are constructed using sigmoid and softmax activation functions. A generalized delta rule is adopted, and a stochastic gradient descent scheme is used to calculate the weight update of the neural network. The proposed fault diagnosis algorithm can be augmented to a fault-tolerant controller to construct an integrated system that involves solving a convex optimization problem. Numerical simulations are conducted to validate the performance of the proposed diagnostic algorithm. It is demonstrated that the performance can be adjusted by controlling the design parameters.</abstract><cop>Bucheon / Seoul</cop><pub>Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers</pub><doi>10.1007/s12555-021-0729-1</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9030-0490</orcidid><orcidid>https://orcid.org/0000-0003-2546-113X</orcidid><orcidid>https://orcid.org/0000-0001-5406-0306</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1598-6446
ispartof International Journal of Control, 2022, Automation, and Systems, 20(4), , pp.1316-1326
issn 1598-6446
2005-4092
language eng
recordid cdi_nrf_kci_oai_kci_go_kr_ARTI_9940911
source Springer Link
subjects Algorithms
Artificial neural networks
Classification
Computational geometry
Control
Convexity
Design parameters
Engineering
Euler angles
Fault diagnosis
Fault tolerance
Mechatronics
Neural networks
Optimization
Regular Papers
Robotics
Rotors
Unmanned aerial vehicles
제어계측공학
title Multiclass Classification Fault Diagnosis of Multirotor UAVs Utilizing a Deep Neural Network
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T20%3A45%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_nrf_k&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiclass%20Classification%20Fault%20Diagnosis%20of%20Multirotor%20UAVs%20Utilizing%20a%20Deep%20Neural%20Network&rft.jtitle=International%20journal%20of%20control,%20automation,%20and%20systems&rft.au=Park,%20Jongho&rft.date=2022-04-01&rft.volume=20&rft.issue=4&rft.spage=1316&rft.epage=1326&rft.pages=1316-1326&rft.issn=1598-6446&rft.eissn=2005-4092&rft_id=info:doi/10.1007/s12555-021-0729-1&rft_dat=%3Cproquest_nrf_k%3E2646578807%3C/proquest_nrf_k%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c280t-98fecc7b58999faf1cc51cbbd86207779fd7434bc82233ce262b0e44295e098a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2646578807&rft_id=info:pmid/&rfr_iscdi=true