Loading…

Performance evaluation study of a commercially available smart patient-controlled analgesia pump with the microbalance method and an infusion analyzer

Patient-controlled analgesia (PCA) has been widely used as an effective medical treatment for pain and for postoperative analgesia. However, improper dose errors in intravenous (IV) administration of narcotic analgesics from a PCA infusion pump can cause patient harm. Furthermore, opioid overdose is...

Full description

Saved in:
Bibliographic Details
Published in:Journal of dental anesthesia and pain medicine: JDAPM 2022, 22(2), , pp.129-143
Main Authors: Park, Jinsoo, Jung, Bongsu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Patient-controlled analgesia (PCA) has been widely used as an effective medical treatment for pain and for postoperative analgesia. However, improper dose errors in intravenous (IV) administration of narcotic analgesics from a PCA infusion pump can cause patient harm. Furthermore, opioid overdose is considered one of the highest risk factors for patients receiving pain medications. Therefore, accurate delivery of opioid analgesics is a critical function of PCA infusion pumps. We designed a microbalance method that consisted of a closed acrylic chamber containing a layer and an oil layer with an electronic balance. A commercially available infusion analyzer (IDA-5, Fluke Co., Everett, WA, USA) was used to measure the accuracy of the infusion flow rate from a commercially available smart PCA infusion pump (PS-1000, UNIMEDICS, Co., Ltd., Seoul, Korea) and compared with the results of the microbalance method. We evaluated the uncertainty of the flow rate measurement using the ISO guide (GUM:1995 part3). The battery life, delay time of the occlusion alarm, and bolus function of the PCA pump were also tested. The microbalance method was good in the short-term 2 h measurement, and IDA-5 was good in the long-term 24 h measurement. The two measurement systems can complement each other in the case of the measurement time. Regarding battery performance, PS-1000 lasted approximately 5 days in a 1 ml/hr flow rate condition without recharging the battery. The occlusion pressure alarm delays of PS-1000 satisfied the conventional alarm threshold of occlusion pressure (300-800 mmHg). Average accuracy bolus volume was measured as 63%, 95%, and 98.5% with 0.1 ml, 1 ml, and 2 ml bolus volume presets, respectively. A 1 ml/hr flow rate measurement was evaluated as 2.08% of expanded uncertainty, with a 95% confidence level. PS-1000 showed a flow accuracy to be within the infusion pump standard, which is ± 5% of flow accuracy. Occlusion alarm of PS-1000 was quickly transmitted, resulting in better safety for patients receiving IV infusion of opioids. PS-1000 is sufficient for a portable smart PCA infusion pump.
ISSN:2383-9309
2383-9317
DOI:10.17245/jdapm.2022.22.2.129