Loading…

Design, Analysis and Application of a Mandrel-Beam-Frictional Sliding Damper

Precise seismic controlling of the frictional sliding damper is hard under different earthquake intensities. Therefore, a new concept of the mandrel-beam-frictional sliding damper is proposed. It consists of a frictional sliding damper and several metallic yielding beams. Although they differ in the...

Full description

Saved in:
Bibliographic Details
Published in:KSCE journal of civil engineering 2022, 26(6), , pp.2747-2764
Main Authors: Hu, Baolin, Li, Bin, Wang, Changhong, Keleta, Yonas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c354t-3e216753ceb70c4dc7a330109ba5a346c74e92ec762ced602d55170767ce14323
container_end_page 2764
container_issue 6
container_start_page 2747
container_title KSCE journal of civil engineering
container_volume 26
creator Hu, Baolin
Li, Bin
Wang, Changhong
Keleta, Yonas
description Precise seismic controlling of the frictional sliding damper is hard under different earthquake intensities. Therefore, a new concept of the mandrel-beam-frictional sliding damper is proposed. It consists of a frictional sliding damper and several metallic yielding beams. Although they differ in the kinematics to consume seismic energy, they could contribute to hybrid energy dissipation through an intermediate mandrel. The sliding force and the yielding load will control the maximal resistance of a frictional damper combining a metallic damper systematically. This study mainly focuses on the design, analysis and application of the integrated damping devices. Hysteretic curves, stiffness equations and numerical algorithms are presented in detail. Three design parameters of the metallic damper, including the quantity, length and thickness of the steel beams, as well as the coefficient of the frictional damper are discussed. Mandrel-beam-frictional sliding damper is applied to a reinforced concrete frame structure, and the seismic performance is evaluated by transient analysis. Optimal design parameters are derived from the energy dissipation ratio. Results indicate that mandrel-beam-frictional sliding damper can dissipate seismic energy efficiently, which will minimize the dynamic responses of the main structure. Low-cost, manufacturing easy and high earthquake energy dissipation will support it to be a new type of hybrid damping device.
doi_str_mv 10.1007/s12205-022-0674-4
format article
fullrecord <record><control><sourceid>proquest_nrf_k</sourceid><recordid>TN_cdi_nrf_kci_oai_kci_go_kr_ARTI_9975766</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919463977</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-3e216753ceb70c4dc7a330109ba5a346c74e92ec762ced602d55170767ce14323</originalsourceid><addsrcrecordid>eNpFkE1LAzEQQBdRsNT-AG8BT4LRfM_mWFurhYqg9RzSbFrSbnfXpD34701dwbnMMPMYZl5RXFNyTwmBh0QZIxITxjBRILA4KwZUg8K8JOV5rhlTGHRZXhajlLYkB2dQcjkoFlOfwqa5Q-PG1t8pJGSbCo27rg7OHkLboHaNLHrN3ehr_OjtHs9icKeRrdFHHarQbNDU7jsfr4qLta2TH_3lYfE5e1pOXvDi7Xk-GS-w41IcMPeMKpDc-RUQJyoHlnNCiV5ZablQDoTXzDtQzPlKEVZJSYGAAuep4IwPi9t-bxPXZueCaW34zZvW7KIZvy_nRmuQoFRmb3q2i-3X0aeD2bbHmG9PhmmqheIaIFOsp1IX8z8-_lOUmJNk00s2WbI5STaC_wAD6Gxt</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919463977</pqid></control><display><type>article</type><title>Design, Analysis and Application of a Mandrel-Beam-Frictional Sliding Damper</title><source>ScienceDirect</source><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Hu, Baolin ; Li, Bin ; Wang, Changhong ; Keleta, Yonas</creator><creatorcontrib>Hu, Baolin ; Li, Bin ; Wang, Changhong ; Keleta, Yonas</creatorcontrib><description>Precise seismic controlling of the frictional sliding damper is hard under different earthquake intensities. Therefore, a new concept of the mandrel-beam-frictional sliding damper is proposed. It consists of a frictional sliding damper and several metallic yielding beams. Although they differ in the kinematics to consume seismic energy, they could contribute to hybrid energy dissipation through an intermediate mandrel. The sliding force and the yielding load will control the maximal resistance of a frictional damper combining a metallic damper systematically. This study mainly focuses on the design, analysis and application of the integrated damping devices. Hysteretic curves, stiffness equations and numerical algorithms are presented in detail. Three design parameters of the metallic damper, including the quantity, length and thickness of the steel beams, as well as the coefficient of the frictional damper are discussed. Mandrel-beam-frictional sliding damper is applied to a reinforced concrete frame structure, and the seismic performance is evaluated by transient analysis. Optimal design parameters are derived from the energy dissipation ratio. Results indicate that mandrel-beam-frictional sliding damper can dissipate seismic energy efficiently, which will minimize the dynamic responses of the main structure. Low-cost, manufacturing easy and high earthquake energy dissipation will support it to be a new type of hybrid damping device.</description><identifier>ISSN: 1226-7988</identifier><identifier>EISSN: 1976-3808</identifier><identifier>DOI: 10.1007/s12205-022-0674-4</identifier><language>eng</language><publisher>Seoul: Korean Society of Civil Engineers</publisher><subject>Algorithms ; Analysis ; Civil Engineering ; Damping ; Design ; Design analysis ; Design parameters ; Earthquake dampers ; Earthquakes ; Energy dissipation ; Energy exchange ; Engineering ; Frame structures ; Geotechnical Engineering &amp; Applied Earth Sciences ; Industrial Pollution Prevention ; Kinematics ; Parameters ; Reinforced concrete ; Reinforcing steels ; Seismic activity ; Seismic energy ; Seismic response ; Sliding ; Slumping ; Steel beams ; Structural Engineering ; Transient analysis ; 토목공학</subject><ispartof>KSCE Journal of Civil Engineering, 2022, 26(6), , pp.2747-2764</ispartof><rights>Korean Society of Civil Engineers 2022</rights><rights>Korean Society of Civil Engineers 2022.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c354t-3e216753ceb70c4dc7a330109ba5a346c74e92ec762ced602d55170767ce14323</cites><orcidid>0000-0002-8015-1460</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002841942$$DAccess content in National Research Foundation of Korea (NRF)$$Hfree_for_read</backlink></links><search><creatorcontrib>Hu, Baolin</creatorcontrib><creatorcontrib>Li, Bin</creatorcontrib><creatorcontrib>Wang, Changhong</creatorcontrib><creatorcontrib>Keleta, Yonas</creatorcontrib><title>Design, Analysis and Application of a Mandrel-Beam-Frictional Sliding Damper</title><title>KSCE journal of civil engineering</title><addtitle>KSCE J Civ Eng</addtitle><description>Precise seismic controlling of the frictional sliding damper is hard under different earthquake intensities. Therefore, a new concept of the mandrel-beam-frictional sliding damper is proposed. It consists of a frictional sliding damper and several metallic yielding beams. Although they differ in the kinematics to consume seismic energy, they could contribute to hybrid energy dissipation through an intermediate mandrel. The sliding force and the yielding load will control the maximal resistance of a frictional damper combining a metallic damper systematically. This study mainly focuses on the design, analysis and application of the integrated damping devices. Hysteretic curves, stiffness equations and numerical algorithms are presented in detail. Three design parameters of the metallic damper, including the quantity, length and thickness of the steel beams, as well as the coefficient of the frictional damper are discussed. Mandrel-beam-frictional sliding damper is applied to a reinforced concrete frame structure, and the seismic performance is evaluated by transient analysis. Optimal design parameters are derived from the energy dissipation ratio. Results indicate that mandrel-beam-frictional sliding damper can dissipate seismic energy efficiently, which will minimize the dynamic responses of the main structure. Low-cost, manufacturing easy and high earthquake energy dissipation will support it to be a new type of hybrid damping device.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Civil Engineering</subject><subject>Damping</subject><subject>Design</subject><subject>Design analysis</subject><subject>Design parameters</subject><subject>Earthquake dampers</subject><subject>Earthquakes</subject><subject>Energy dissipation</subject><subject>Energy exchange</subject><subject>Engineering</subject><subject>Frame structures</subject><subject>Geotechnical Engineering &amp; Applied Earth Sciences</subject><subject>Industrial Pollution Prevention</subject><subject>Kinematics</subject><subject>Parameters</subject><subject>Reinforced concrete</subject><subject>Reinforcing steels</subject><subject>Seismic activity</subject><subject>Seismic energy</subject><subject>Seismic response</subject><subject>Sliding</subject><subject>Slumping</subject><subject>Steel beams</subject><subject>Structural Engineering</subject><subject>Transient analysis</subject><subject>토목공학</subject><issn>1226-7988</issn><issn>1976-3808</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpFkE1LAzEQQBdRsNT-AG8BT4LRfM_mWFurhYqg9RzSbFrSbnfXpD34701dwbnMMPMYZl5RXFNyTwmBh0QZIxITxjBRILA4KwZUg8K8JOV5rhlTGHRZXhajlLYkB2dQcjkoFlOfwqa5Q-PG1t8pJGSbCo27rg7OHkLboHaNLHrN3ehr_OjtHs9icKeRrdFHHarQbNDU7jsfr4qLta2TH_3lYfE5e1pOXvDi7Xk-GS-w41IcMPeMKpDc-RUQJyoHlnNCiV5ZablQDoTXzDtQzPlKEVZJSYGAAuep4IwPi9t-bxPXZueCaW34zZvW7KIZvy_nRmuQoFRmb3q2i-3X0aeD2bbHmG9PhmmqheIaIFOsp1IX8z8-_lOUmJNk00s2WbI5STaC_wAD6Gxt</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Hu, Baolin</creator><creator>Li, Bin</creator><creator>Wang, Changhong</creator><creator>Keleta, Yonas</creator><general>Korean Society of Civil Engineers</general><general>Springer Nature B.V</general><general>대한토목학회</general><scope>7QH</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>ACYCR</scope><orcidid>https://orcid.org/0000-0002-8015-1460</orcidid></search><sort><creationdate>20220601</creationdate><title>Design, Analysis and Application of a Mandrel-Beam-Frictional Sliding Damper</title><author>Hu, Baolin ; Li, Bin ; Wang, Changhong ; Keleta, Yonas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-3e216753ceb70c4dc7a330109ba5a346c74e92ec762ced602d55170767ce14323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Civil Engineering</topic><topic>Damping</topic><topic>Design</topic><topic>Design analysis</topic><topic>Design parameters</topic><topic>Earthquake dampers</topic><topic>Earthquakes</topic><topic>Energy dissipation</topic><topic>Energy exchange</topic><topic>Engineering</topic><topic>Frame structures</topic><topic>Geotechnical Engineering &amp; Applied Earth Sciences</topic><topic>Industrial Pollution Prevention</topic><topic>Kinematics</topic><topic>Parameters</topic><topic>Reinforced concrete</topic><topic>Reinforcing steels</topic><topic>Seismic activity</topic><topic>Seismic energy</topic><topic>Seismic response</topic><topic>Sliding</topic><topic>Slumping</topic><topic>Steel beams</topic><topic>Structural Engineering</topic><topic>Transient analysis</topic><topic>토목공학</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Baolin</creatorcontrib><creatorcontrib>Li, Bin</creatorcontrib><creatorcontrib>Wang, Changhong</creatorcontrib><creatorcontrib>Keleta, Yonas</creatorcontrib><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Korean Citation Index</collection><jtitle>KSCE journal of civil engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Baolin</au><au>Li, Bin</au><au>Wang, Changhong</au><au>Keleta, Yonas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design, Analysis and Application of a Mandrel-Beam-Frictional Sliding Damper</atitle><jtitle>KSCE journal of civil engineering</jtitle><stitle>KSCE J Civ Eng</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>26</volume><issue>6</issue><spage>2747</spage><epage>2764</epage><pages>2747-2764</pages><issn>1226-7988</issn><eissn>1976-3808</eissn><abstract>Precise seismic controlling of the frictional sliding damper is hard under different earthquake intensities. Therefore, a new concept of the mandrel-beam-frictional sliding damper is proposed. It consists of a frictional sliding damper and several metallic yielding beams. Although they differ in the kinematics to consume seismic energy, they could contribute to hybrid energy dissipation through an intermediate mandrel. The sliding force and the yielding load will control the maximal resistance of a frictional damper combining a metallic damper systematically. This study mainly focuses on the design, analysis and application of the integrated damping devices. Hysteretic curves, stiffness equations and numerical algorithms are presented in detail. Three design parameters of the metallic damper, including the quantity, length and thickness of the steel beams, as well as the coefficient of the frictional damper are discussed. Mandrel-beam-frictional sliding damper is applied to a reinforced concrete frame structure, and the seismic performance is evaluated by transient analysis. Optimal design parameters are derived from the energy dissipation ratio. Results indicate that mandrel-beam-frictional sliding damper can dissipate seismic energy efficiently, which will minimize the dynamic responses of the main structure. Low-cost, manufacturing easy and high earthquake energy dissipation will support it to be a new type of hybrid damping device.</abstract><cop>Seoul</cop><pub>Korean Society of Civil Engineers</pub><doi>10.1007/s12205-022-0674-4</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-8015-1460</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1226-7988
ispartof KSCE Journal of Civil Engineering, 2022, 26(6), , pp.2747-2764
issn 1226-7988
1976-3808
language eng
recordid cdi_nrf_kci_oai_kci_go_kr_ARTI_9975766
source ScienceDirect; Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List
subjects Algorithms
Analysis
Civil Engineering
Damping
Design
Design analysis
Design parameters
Earthquake dampers
Earthquakes
Energy dissipation
Energy exchange
Engineering
Frame structures
Geotechnical Engineering & Applied Earth Sciences
Industrial Pollution Prevention
Kinematics
Parameters
Reinforced concrete
Reinforcing steels
Seismic activity
Seismic energy
Seismic response
Sliding
Slumping
Steel beams
Structural Engineering
Transient analysis
토목공학
title Design, Analysis and Application of a Mandrel-Beam-Frictional Sliding Damper
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T12%3A24%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_nrf_k&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design,%20Analysis%20and%20Application%20of%20a%20Mandrel-Beam-Frictional%20Sliding%20Damper&rft.jtitle=KSCE%20journal%20of%20civil%20engineering&rft.au=Hu,%20Baolin&rft.date=2022-06-01&rft.volume=26&rft.issue=6&rft.spage=2747&rft.epage=2764&rft.pages=2747-2764&rft.issn=1226-7988&rft.eissn=1976-3808&rft_id=info:doi/10.1007/s12205-022-0674-4&rft_dat=%3Cproquest_nrf_k%3E2919463977%3C/proquest_nrf_k%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c354t-3e216753ceb70c4dc7a330109ba5a346c74e92ec762ced602d55170767ce14323%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2919463977&rft_id=info:pmid/&rfr_iscdi=true