Loading…
Design, Analysis and Application of a Mandrel-Beam-Frictional Sliding Damper
Precise seismic controlling of the frictional sliding damper is hard under different earthquake intensities. Therefore, a new concept of the mandrel-beam-frictional sliding damper is proposed. It consists of a frictional sliding damper and several metallic yielding beams. Although they differ in the...
Saved in:
Published in: | KSCE journal of civil engineering 2022, 26(6), , pp.2747-2764 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c354t-3e216753ceb70c4dc7a330109ba5a346c74e92ec762ced602d55170767ce14323 |
container_end_page | 2764 |
container_issue | 6 |
container_start_page | 2747 |
container_title | KSCE journal of civil engineering |
container_volume | 26 |
creator | Hu, Baolin Li, Bin Wang, Changhong Keleta, Yonas |
description | Precise seismic controlling of the frictional sliding damper is hard under different earthquake intensities. Therefore, a new concept of the mandrel-beam-frictional sliding damper is proposed. It consists of a frictional sliding damper and several metallic yielding beams. Although they differ in the kinematics to consume seismic energy, they could contribute to hybrid energy dissipation through an intermediate mandrel. The sliding force and the yielding load will control the maximal resistance of a frictional damper combining a metallic damper systematically. This study mainly focuses on the design, analysis and application of the integrated damping devices. Hysteretic curves, stiffness equations and numerical algorithms are presented in detail. Three design parameters of the metallic damper, including the quantity, length and thickness of the steel beams, as well as the coefficient of the frictional damper are discussed. Mandrel-beam-frictional sliding damper is applied to a reinforced concrete frame structure, and the seismic performance is evaluated by transient analysis. Optimal design parameters are derived from the energy dissipation ratio. Results indicate that mandrel-beam-frictional sliding damper can dissipate seismic energy efficiently, which will minimize the dynamic responses of the main structure. Low-cost, manufacturing easy and high earthquake energy dissipation will support it to be a new type of hybrid damping device. |
doi_str_mv | 10.1007/s12205-022-0674-4 |
format | article |
fullrecord | <record><control><sourceid>proquest_nrf_k</sourceid><recordid>TN_cdi_nrf_kci_oai_kci_go_kr_ARTI_9975766</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919463977</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-3e216753ceb70c4dc7a330109ba5a346c74e92ec762ced602d55170767ce14323</originalsourceid><addsrcrecordid>eNpFkE1LAzEQQBdRsNT-AG8BT4LRfM_mWFurhYqg9RzSbFrSbnfXpD34701dwbnMMPMYZl5RXFNyTwmBh0QZIxITxjBRILA4KwZUg8K8JOV5rhlTGHRZXhajlLYkB2dQcjkoFlOfwqa5Q-PG1t8pJGSbCo27rg7OHkLboHaNLHrN3ehr_OjtHs9icKeRrdFHHarQbNDU7jsfr4qLta2TH_3lYfE5e1pOXvDi7Xk-GS-w41IcMPeMKpDc-RUQJyoHlnNCiV5ZablQDoTXzDtQzPlKEVZJSYGAAuep4IwPi9t-bxPXZueCaW34zZvW7KIZvy_nRmuQoFRmb3q2i-3X0aeD2bbHmG9PhmmqheIaIFOsp1IX8z8-_lOUmJNk00s2WbI5STaC_wAD6Gxt</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919463977</pqid></control><display><type>article</type><title>Design, Analysis and Application of a Mandrel-Beam-Frictional Sliding Damper</title><source>ScienceDirect</source><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Hu, Baolin ; Li, Bin ; Wang, Changhong ; Keleta, Yonas</creator><creatorcontrib>Hu, Baolin ; Li, Bin ; Wang, Changhong ; Keleta, Yonas</creatorcontrib><description>Precise seismic controlling of the frictional sliding damper is hard under different earthquake intensities. Therefore, a new concept of the mandrel-beam-frictional sliding damper is proposed. It consists of a frictional sliding damper and several metallic yielding beams. Although they differ in the kinematics to consume seismic energy, they could contribute to hybrid energy dissipation through an intermediate mandrel. The sliding force and the yielding load will control the maximal resistance of a frictional damper combining a metallic damper systematically. This study mainly focuses on the design, analysis and application of the integrated damping devices. Hysteretic curves, stiffness equations and numerical algorithms are presented in detail. Three design parameters of the metallic damper, including the quantity, length and thickness of the steel beams, as well as the coefficient of the frictional damper are discussed. Mandrel-beam-frictional sliding damper is applied to a reinforced concrete frame structure, and the seismic performance is evaluated by transient analysis. Optimal design parameters are derived from the energy dissipation ratio. Results indicate that mandrel-beam-frictional sliding damper can dissipate seismic energy efficiently, which will minimize the dynamic responses of the main structure. Low-cost, manufacturing easy and high earthquake energy dissipation will support it to be a new type of hybrid damping device.</description><identifier>ISSN: 1226-7988</identifier><identifier>EISSN: 1976-3808</identifier><identifier>DOI: 10.1007/s12205-022-0674-4</identifier><language>eng</language><publisher>Seoul: Korean Society of Civil Engineers</publisher><subject>Algorithms ; Analysis ; Civil Engineering ; Damping ; Design ; Design analysis ; Design parameters ; Earthquake dampers ; Earthquakes ; Energy dissipation ; Energy exchange ; Engineering ; Frame structures ; Geotechnical Engineering & Applied Earth Sciences ; Industrial Pollution Prevention ; Kinematics ; Parameters ; Reinforced concrete ; Reinforcing steels ; Seismic activity ; Seismic energy ; Seismic response ; Sliding ; Slumping ; Steel beams ; Structural Engineering ; Transient analysis ; 토목공학</subject><ispartof>KSCE Journal of Civil Engineering, 2022, 26(6), , pp.2747-2764</ispartof><rights>Korean Society of Civil Engineers 2022</rights><rights>Korean Society of Civil Engineers 2022.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c354t-3e216753ceb70c4dc7a330109ba5a346c74e92ec762ced602d55170767ce14323</cites><orcidid>0000-0002-8015-1460</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002841942$$DAccess content in National Research Foundation of Korea (NRF)$$Hfree_for_read</backlink></links><search><creatorcontrib>Hu, Baolin</creatorcontrib><creatorcontrib>Li, Bin</creatorcontrib><creatorcontrib>Wang, Changhong</creatorcontrib><creatorcontrib>Keleta, Yonas</creatorcontrib><title>Design, Analysis and Application of a Mandrel-Beam-Frictional Sliding Damper</title><title>KSCE journal of civil engineering</title><addtitle>KSCE J Civ Eng</addtitle><description>Precise seismic controlling of the frictional sliding damper is hard under different earthquake intensities. Therefore, a new concept of the mandrel-beam-frictional sliding damper is proposed. It consists of a frictional sliding damper and several metallic yielding beams. Although they differ in the kinematics to consume seismic energy, they could contribute to hybrid energy dissipation through an intermediate mandrel. The sliding force and the yielding load will control the maximal resistance of a frictional damper combining a metallic damper systematically. This study mainly focuses on the design, analysis and application of the integrated damping devices. Hysteretic curves, stiffness equations and numerical algorithms are presented in detail. Three design parameters of the metallic damper, including the quantity, length and thickness of the steel beams, as well as the coefficient of the frictional damper are discussed. Mandrel-beam-frictional sliding damper is applied to a reinforced concrete frame structure, and the seismic performance is evaluated by transient analysis. Optimal design parameters are derived from the energy dissipation ratio. Results indicate that mandrel-beam-frictional sliding damper can dissipate seismic energy efficiently, which will minimize the dynamic responses of the main structure. Low-cost, manufacturing easy and high earthquake energy dissipation will support it to be a new type of hybrid damping device.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Civil Engineering</subject><subject>Damping</subject><subject>Design</subject><subject>Design analysis</subject><subject>Design parameters</subject><subject>Earthquake dampers</subject><subject>Earthquakes</subject><subject>Energy dissipation</subject><subject>Energy exchange</subject><subject>Engineering</subject><subject>Frame structures</subject><subject>Geotechnical Engineering & Applied Earth Sciences</subject><subject>Industrial Pollution Prevention</subject><subject>Kinematics</subject><subject>Parameters</subject><subject>Reinforced concrete</subject><subject>Reinforcing steels</subject><subject>Seismic activity</subject><subject>Seismic energy</subject><subject>Seismic response</subject><subject>Sliding</subject><subject>Slumping</subject><subject>Steel beams</subject><subject>Structural Engineering</subject><subject>Transient analysis</subject><subject>토목공학</subject><issn>1226-7988</issn><issn>1976-3808</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpFkE1LAzEQQBdRsNT-AG8BT4LRfM_mWFurhYqg9RzSbFrSbnfXpD34701dwbnMMPMYZl5RXFNyTwmBh0QZIxITxjBRILA4KwZUg8K8JOV5rhlTGHRZXhajlLYkB2dQcjkoFlOfwqa5Q-PG1t8pJGSbCo27rg7OHkLboHaNLHrN3ehr_OjtHs9icKeRrdFHHarQbNDU7jsfr4qLta2TH_3lYfE5e1pOXvDi7Xk-GS-w41IcMPeMKpDc-RUQJyoHlnNCiV5ZablQDoTXzDtQzPlKEVZJSYGAAuep4IwPi9t-bxPXZueCaW34zZvW7KIZvy_nRmuQoFRmb3q2i-3X0aeD2bbHmG9PhmmqheIaIFOsp1IX8z8-_lOUmJNk00s2WbI5STaC_wAD6Gxt</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Hu, Baolin</creator><creator>Li, Bin</creator><creator>Wang, Changhong</creator><creator>Keleta, Yonas</creator><general>Korean Society of Civil Engineers</general><general>Springer Nature B.V</general><general>대한토목학회</general><scope>7QH</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>ACYCR</scope><orcidid>https://orcid.org/0000-0002-8015-1460</orcidid></search><sort><creationdate>20220601</creationdate><title>Design, Analysis and Application of a Mandrel-Beam-Frictional Sliding Damper</title><author>Hu, Baolin ; Li, Bin ; Wang, Changhong ; Keleta, Yonas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-3e216753ceb70c4dc7a330109ba5a346c74e92ec762ced602d55170767ce14323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Civil Engineering</topic><topic>Damping</topic><topic>Design</topic><topic>Design analysis</topic><topic>Design parameters</topic><topic>Earthquake dampers</topic><topic>Earthquakes</topic><topic>Energy dissipation</topic><topic>Energy exchange</topic><topic>Engineering</topic><topic>Frame structures</topic><topic>Geotechnical Engineering & Applied Earth Sciences</topic><topic>Industrial Pollution Prevention</topic><topic>Kinematics</topic><topic>Parameters</topic><topic>Reinforced concrete</topic><topic>Reinforcing steels</topic><topic>Seismic activity</topic><topic>Seismic energy</topic><topic>Seismic response</topic><topic>Sliding</topic><topic>Slumping</topic><topic>Steel beams</topic><topic>Structural Engineering</topic><topic>Transient analysis</topic><topic>토목공학</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Baolin</creatorcontrib><creatorcontrib>Li, Bin</creatorcontrib><creatorcontrib>Wang, Changhong</creatorcontrib><creatorcontrib>Keleta, Yonas</creatorcontrib><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Korean Citation Index</collection><jtitle>KSCE journal of civil engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Baolin</au><au>Li, Bin</au><au>Wang, Changhong</au><au>Keleta, Yonas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design, Analysis and Application of a Mandrel-Beam-Frictional Sliding Damper</atitle><jtitle>KSCE journal of civil engineering</jtitle><stitle>KSCE J Civ Eng</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>26</volume><issue>6</issue><spage>2747</spage><epage>2764</epage><pages>2747-2764</pages><issn>1226-7988</issn><eissn>1976-3808</eissn><abstract>Precise seismic controlling of the frictional sliding damper is hard under different earthquake intensities. Therefore, a new concept of the mandrel-beam-frictional sliding damper is proposed. It consists of a frictional sliding damper and several metallic yielding beams. Although they differ in the kinematics to consume seismic energy, they could contribute to hybrid energy dissipation through an intermediate mandrel. The sliding force and the yielding load will control the maximal resistance of a frictional damper combining a metallic damper systematically. This study mainly focuses on the design, analysis and application of the integrated damping devices. Hysteretic curves, stiffness equations and numerical algorithms are presented in detail. Three design parameters of the metallic damper, including the quantity, length and thickness of the steel beams, as well as the coefficient of the frictional damper are discussed. Mandrel-beam-frictional sliding damper is applied to a reinforced concrete frame structure, and the seismic performance is evaluated by transient analysis. Optimal design parameters are derived from the energy dissipation ratio. Results indicate that mandrel-beam-frictional sliding damper can dissipate seismic energy efficiently, which will minimize the dynamic responses of the main structure. Low-cost, manufacturing easy and high earthquake energy dissipation will support it to be a new type of hybrid damping device.</abstract><cop>Seoul</cop><pub>Korean Society of Civil Engineers</pub><doi>10.1007/s12205-022-0674-4</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-8015-1460</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1226-7988 |
ispartof | KSCE Journal of Civil Engineering, 2022, 26(6), , pp.2747-2764 |
issn | 1226-7988 1976-3808 |
language | eng |
recordid | cdi_nrf_kci_oai_kci_go_kr_ARTI_9975766 |
source | ScienceDirect; Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List |
subjects | Algorithms Analysis Civil Engineering Damping Design Design analysis Design parameters Earthquake dampers Earthquakes Energy dissipation Energy exchange Engineering Frame structures Geotechnical Engineering & Applied Earth Sciences Industrial Pollution Prevention Kinematics Parameters Reinforced concrete Reinforcing steels Seismic activity Seismic energy Seismic response Sliding Slumping Steel beams Structural Engineering Transient analysis 토목공학 |
title | Design, Analysis and Application of a Mandrel-Beam-Frictional Sliding Damper |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T12%3A24%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_nrf_k&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design,%20Analysis%20and%20Application%20of%20a%20Mandrel-Beam-Frictional%20Sliding%20Damper&rft.jtitle=KSCE%20journal%20of%20civil%20engineering&rft.au=Hu,%20Baolin&rft.date=2022-06-01&rft.volume=26&rft.issue=6&rft.spage=2747&rft.epage=2764&rft.pages=2747-2764&rft.issn=1226-7988&rft.eissn=1976-3808&rft_id=info:doi/10.1007/s12205-022-0674-4&rft_dat=%3Cproquest_nrf_k%3E2919463977%3C/proquest_nrf_k%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c354t-3e216753ceb70c4dc7a330109ba5a346c74e92ec762ced602d55170767ce14323%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2919463977&rft_id=info:pmid/&rfr_iscdi=true |