Loading…

Elucidating Negative Thermal Expansion in MOF-5

Multi-temperature X-ray diffraction studies show that twisting, rotation, and libration cause negative thermal expansion (NTE) of the nanoporous metal−organic framework MOF-5, Zn4O(1,4-benzenedicarboxylate)3. The near-linear lattice contraction is quantified in the temperature range 80−500 K using s...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physical chemistry. C 2010-10, Vol.114 (39), p.16181-16186
Main Authors: Lock, Nina, Wu, Yue, Christensen, Mogens, Cameron, Lisa J, Peterson, Vanessa K, Bridgeman, Adam J, Kepert, Cameron J, Iversen, Bo B
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Multi-temperature X-ray diffraction studies show that twisting, rotation, and libration cause negative thermal expansion (NTE) of the nanoporous metal−organic framework MOF-5, Zn4O(1,4-benzenedicarboxylate)3. The near-linear lattice contraction is quantified in the temperature range 80−500 K using synchrotron powder X-ray diffraction. Vibrational motions causing the abnormal expansion behavior are evidenced by shortening of certain interatomic distances with increasing temperature according to single-crystal X-ray diffraction on a guest-free crystal over a broad temperature range. Detailed analysis of the atomic positional and displacement parameters suggests two contributions to cause the effect: (1) local twisting and vibrational motion of the carboxylate groups and (2) concerted transverse vibration of the linear linkers. The vibrational mechanism is confirmed by calculations of the dynamics in a molecular fragment of the framework.
ISSN:1932-7447
1932-7455
DOI:10.1021/jp103212z