Loading…

Valency configuration of transition metal impurities in ZnO

We use the self-interaction corrected local spin-density approximation to investigate the ground state valency configuration of transition metal (TM = Mn, Co) impurities in n- and p-type ZnO. We find that in pure Zn^sub 1-x^TM^sub x^O, the localized TM^sup 2+^ configuration is energetically favored...

Full description

Saved in:
Bibliographic Details
Published in:Journal of electronic materials 2006-04, Vol.35 (4), p.556-561
Main Authors: Petit, L, Schulthess, T C, Svane, A, Temmerman, W M, Szotek, Z, Janotti, A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c358t-a339a12d4f3e3d85e635bc66e3d6de9454715fc507d686bceecfa14314c218453
cites cdi_FETCH-LOGICAL-c358t-a339a12d4f3e3d85e635bc66e3d6de9454715fc507d686bceecfa14314c218453
container_end_page 561
container_issue 4
container_start_page 556
container_title Journal of electronic materials
container_volume 35
creator Petit, L
Schulthess, T C
Svane, A
Temmerman, W M
Szotek, Z
Janotti, A
description We use the self-interaction corrected local spin-density approximation to investigate the ground state valency configuration of transition metal (TM = Mn, Co) impurities in n- and p-type ZnO. We find that in pure Zn^sub 1-x^TM^sub x^O, the localized TM^sup 2+^ configuration is energetically favored over the itinerant d-electron configuration of the local spin density (LSD) picture. Our calculations indicate furthermore that the (+/0) donor level is situated in the ZnO gap. Consequently, for n-type conditions, with the Fermi energy ε^sub F^ close to the conduction band minimum, TM remains in the 2+ charge state, while for p-type conditions, with ε^sub F^ close to the valence band maximum, the 3+ charge state is energetically preferred. In the latter scenario, modeled here by co-doping with N, the additional delocalized d-electron charge transfers into the entire states at the top of the valence band, and hole carriers will only exist, if the N concentration exceeds the TM impurity concentration. [PUBLICATION ABSTRACT]
doi_str_mv 10.1007/s11664-006-0099-8
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1003292</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2664700632</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-a339a12d4f3e3d85e635bc66e3d6de9454715fc507d686bceecfa14314c218453</originalsourceid><addsrcrecordid>eNptkU1LAzEQhoMoWKs_wNui4G01k69N8CTFLyj0oiJeQprNaso2W5PdQ_-9qSsI4mEYZniYed8ZhE4BXwLG1VUCEIKVGIscSpVyD02AM1qCFK_7aIKpgJITyg_RUUorjIGDhAm6fjGtC3Zb2C40_n2IpvddKLqm6KMJyX9Xa9ebtvDrzRBzw6XCh-ItLI7RQWPa5E5-8hQ9390-zR7K-eL-cXYzLy3lsi8NpcoAqVlDHa0ld4LypRUiF6J2inFWAW8sx1UtpFha52xjgFFgloBknE7R2Ti3S73Xyfre2Y-sNzjb6-yeEkUydDFCm9h9Di71eu2TdW1rguuGpIlSEojEGTz_A666IYZsQJN8wiqfkJLfnf9QmCmCFdlBMEI2dilF1-hN9GsTt1nVTlilx7foPFPv3qIl_QKw733A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204920922</pqid></control><display><type>article</type><title>Valency configuration of transition metal impurities in ZnO</title><source>Springer Nature</source><creator>Petit, L ; Schulthess, T C ; Svane, A ; Temmerman, W M ; Szotek, Z ; Janotti, A</creator><creatorcontrib>Petit, L ; Schulthess, T C ; Svane, A ; Temmerman, W M ; Szotek, Z ; Janotti, A ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States) ; Center for Computational Sciences</creatorcontrib><description>We use the self-interaction corrected local spin-density approximation to investigate the ground state valency configuration of transition metal (TM = Mn, Co) impurities in n- and p-type ZnO. We find that in pure Zn^sub 1-x^TM^sub x^O, the localized TM^sup 2+^ configuration is energetically favored over the itinerant d-electron configuration of the local spin density (LSD) picture. Our calculations indicate furthermore that the (+/0) donor level is situated in the ZnO gap. Consequently, for n-type conditions, with the Fermi energy ε^sub F^ close to the conduction band minimum, TM remains in the 2+ charge state, while for p-type conditions, with ε^sub F^ close to the valence band maximum, the 3+ charge state is energetically preferred. In the latter scenario, modeled here by co-doping with N, the additional delocalized d-electron charge transfers into the entire states at the top of the valence band, and hole carriers will only exist, if the N concentration exceeds the TM impurity concentration. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-006-0099-8</identifier><identifier>CODEN: JECMA5</identifier><language>eng</language><publisher>Warrendale: Springer Nature B.V</publisher><subject>APPROXIMATIONS ; CHARGE STATES ; Charge transfer ; Conduction bands ; CONFIGURATION ; Configurations ; Density ; Electromagnetism ; Electron spin ; Electrons ; GROUND STATES ; IMPURITIES ; MATERIALS SCIENCE ; Semiconductors ; SPIN ; TRANSITION ELEMENTS ; Transition metals ; VALENCE ; Valence band ; Zinc oxide ; Zinc oxides</subject><ispartof>Journal of electronic materials, 2006-04, Vol.35 (4), p.556-561</ispartof><rights>Copyright Minerals, Metals &amp; Materials Society Apr 2006</rights><rights>TMS-The Minerals, Metals and Materials Society 2006.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-a339a12d4f3e3d85e635bc66e3d6de9454715fc507d686bceecfa14314c218453</citedby><cites>FETCH-LOGICAL-c358t-a339a12d4f3e3d85e635bc66e3d6de9454715fc507d686bceecfa14314c218453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1003292$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Petit, L</creatorcontrib><creatorcontrib>Schulthess, T C</creatorcontrib><creatorcontrib>Svane, A</creatorcontrib><creatorcontrib>Temmerman, W M</creatorcontrib><creatorcontrib>Szotek, Z</creatorcontrib><creatorcontrib>Janotti, A</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Center for Computational Sciences</creatorcontrib><title>Valency configuration of transition metal impurities in ZnO</title><title>Journal of electronic materials</title><description>We use the self-interaction corrected local spin-density approximation to investigate the ground state valency configuration of transition metal (TM = Mn, Co) impurities in n- and p-type ZnO. We find that in pure Zn^sub 1-x^TM^sub x^O, the localized TM^sup 2+^ configuration is energetically favored over the itinerant d-electron configuration of the local spin density (LSD) picture. Our calculations indicate furthermore that the (+/0) donor level is situated in the ZnO gap. Consequently, for n-type conditions, with the Fermi energy ε^sub F^ close to the conduction band minimum, TM remains in the 2+ charge state, while for p-type conditions, with ε^sub F^ close to the valence band maximum, the 3+ charge state is energetically preferred. In the latter scenario, modeled here by co-doping with N, the additional delocalized d-electron charge transfers into the entire states at the top of the valence band, and hole carriers will only exist, if the N concentration exceeds the TM impurity concentration. [PUBLICATION ABSTRACT]</description><subject>APPROXIMATIONS</subject><subject>CHARGE STATES</subject><subject>Charge transfer</subject><subject>Conduction bands</subject><subject>CONFIGURATION</subject><subject>Configurations</subject><subject>Density</subject><subject>Electromagnetism</subject><subject>Electron spin</subject><subject>Electrons</subject><subject>GROUND STATES</subject><subject>IMPURITIES</subject><subject>MATERIALS SCIENCE</subject><subject>Semiconductors</subject><subject>SPIN</subject><subject>TRANSITION ELEMENTS</subject><subject>Transition metals</subject><subject>VALENCE</subject><subject>Valence band</subject><subject>Zinc oxide</subject><subject>Zinc oxides</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNptkU1LAzEQhoMoWKs_wNui4G01k69N8CTFLyj0oiJeQprNaso2W5PdQ_-9qSsI4mEYZniYed8ZhE4BXwLG1VUCEIKVGIscSpVyD02AM1qCFK_7aIKpgJITyg_RUUorjIGDhAm6fjGtC3Zb2C40_n2IpvddKLqm6KMJyX9Xa9ebtvDrzRBzw6XCh-ItLI7RQWPa5E5-8hQ9390-zR7K-eL-cXYzLy3lsi8NpcoAqVlDHa0ld4LypRUiF6J2inFWAW8sx1UtpFha52xjgFFgloBknE7R2Ti3S73Xyfre2Y-sNzjb6-yeEkUydDFCm9h9Di71eu2TdW1rguuGpIlSEojEGTz_A666IYZsQJN8wiqfkJLfnf9QmCmCFdlBMEI2dilF1-hN9GsTt1nVTlilx7foPFPv3qIl_QKw733A</recordid><startdate>20060401</startdate><enddate>20060401</enddate><creator>Petit, L</creator><creator>Schulthess, T C</creator><creator>Svane, A</creator><creator>Temmerman, W M</creator><creator>Szotek, Z</creator><creator>Janotti, A</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7QQ</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20060401</creationdate><title>Valency configuration of transition metal impurities in ZnO</title><author>Petit, L ; Schulthess, T C ; Svane, A ; Temmerman, W M ; Szotek, Z ; Janotti, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-a339a12d4f3e3d85e635bc66e3d6de9454715fc507d686bceecfa14314c218453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>APPROXIMATIONS</topic><topic>CHARGE STATES</topic><topic>Charge transfer</topic><topic>Conduction bands</topic><topic>CONFIGURATION</topic><topic>Configurations</topic><topic>Density</topic><topic>Electromagnetism</topic><topic>Electron spin</topic><topic>Electrons</topic><topic>GROUND STATES</topic><topic>IMPURITIES</topic><topic>MATERIALS SCIENCE</topic><topic>Semiconductors</topic><topic>SPIN</topic><topic>TRANSITION ELEMENTS</topic><topic>Transition metals</topic><topic>VALENCE</topic><topic>Valence band</topic><topic>Zinc oxide</topic><topic>Zinc oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Petit, L</creatorcontrib><creatorcontrib>Schulthess, T C</creatorcontrib><creatorcontrib>Svane, A</creatorcontrib><creatorcontrib>Temmerman, W M</creatorcontrib><creatorcontrib>Szotek, Z</creatorcontrib><creatorcontrib>Janotti, A</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Center for Computational Sciences</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Ceramic Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Petit, L</au><au>Schulthess, T C</au><au>Svane, A</au><au>Temmerman, W M</au><au>Szotek, Z</au><au>Janotti, A</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><aucorp>Center for Computational Sciences</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Valency configuration of transition metal impurities in ZnO</atitle><jtitle>Journal of electronic materials</jtitle><date>2006-04-01</date><risdate>2006</risdate><volume>35</volume><issue>4</issue><spage>556</spage><epage>561</epage><pages>556-561</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><coden>JECMA5</coden><abstract>We use the self-interaction corrected local spin-density approximation to investigate the ground state valency configuration of transition metal (TM = Mn, Co) impurities in n- and p-type ZnO. We find that in pure Zn^sub 1-x^TM^sub x^O, the localized TM^sup 2+^ configuration is energetically favored over the itinerant d-electron configuration of the local spin density (LSD) picture. Our calculations indicate furthermore that the (+/0) donor level is situated in the ZnO gap. Consequently, for n-type conditions, with the Fermi energy ε^sub F^ close to the conduction band minimum, TM remains in the 2+ charge state, while for p-type conditions, with ε^sub F^ close to the valence band maximum, the 3+ charge state is energetically preferred. In the latter scenario, modeled here by co-doping with N, the additional delocalized d-electron charge transfers into the entire states at the top of the valence band, and hole carriers will only exist, if the N concentration exceeds the TM impurity concentration. [PUBLICATION ABSTRACT]</abstract><cop>Warrendale</cop><pub>Springer Nature B.V</pub><doi>10.1007/s11664-006-0099-8</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0361-5235
ispartof Journal of electronic materials, 2006-04, Vol.35 (4), p.556-561
issn 0361-5235
1543-186X
language eng
recordid cdi_osti_scitechconnect_1003292
source Springer Nature
subjects APPROXIMATIONS
CHARGE STATES
Charge transfer
Conduction bands
CONFIGURATION
Configurations
Density
Electromagnetism
Electron spin
Electrons
GROUND STATES
IMPURITIES
MATERIALS SCIENCE
Semiconductors
SPIN
TRANSITION ELEMENTS
Transition metals
VALENCE
Valence band
Zinc oxide
Zinc oxides
title Valency configuration of transition metal impurities in ZnO
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T19%3A52%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Valency%20configuration%20of%20transition%20metal%20impurities%20in%20ZnO&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Petit,%20L&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2006-04-01&rft.volume=35&rft.issue=4&rft.spage=556&rft.epage=561&rft.pages=556-561&rft.issn=0361-5235&rft.eissn=1543-186X&rft.coden=JECMA5&rft_id=info:doi/10.1007/s11664-006-0099-8&rft_dat=%3Cproquest_osti_%3E2664700632%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c358t-a339a12d4f3e3d85e635bc66e3d6de9454715fc507d686bceecfa14314c218453%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=204920922&rft_id=info:pmid/&rfr_iscdi=true