Loading…
Lattice collapse and quenching of magnetism in CaFe[subscript 2]As[subscript 2] under pressure: A single-crystal neutron and x-ray diffraction investigation
Single-crystal neutron and high-energy x-ray diffraction measurements have identified the phase lines corresponding to transitions among the ambient-pressure paramagnetic tetragonal (T), the antiferromagnetic orthorhombic (O), and the nonmagnetic collapsed tetragonal (cT) phases of CaFe{sub 2}As{sub...
Saved in:
Published in: | Physical review. B, Condensed matter and materials physics Condensed matter and materials physics, 2009-06, Vol.79 ((2) ; 2009) |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Single-crystal neutron and high-energy x-ray diffraction measurements have identified the phase lines corresponding to transitions among the ambient-pressure paramagnetic tetragonal (T), the antiferromagnetic orthorhombic (O), and the nonmagnetic collapsed tetragonal (cT) phases of CaFe{sub 2}As{sub 2}. We find no evidence of additional structures for pressures of up to 2.5 GPa (at 300 K). Both the T-cT and O-cT transitions exhibit significant hysteresis effects, and we demonstrate that coexistence of the O and cT phases can occur if a nonhydrostatic component of pressure is present. Measurements of the magnetic diffraction peaks show no change in the magnetic structure or ordered moment as a function of pressure in the O phase, and we find no evidence of magnetic ordering in the cT phase. Band-structure calculations show that the transition into the cT phase results in a strong decrease in the iron 3d density of states at the Fermi energy, consistent with a loss of the magnetic moment. |
---|---|
ISSN: | 1098-0121 1550-235X |
DOI: | 10.1103/PhysRevB.79.024513 |