Loading…
Highly dispersed nanosilica–epoxy resins with enhanced mechanical properties
Epoxy–nanocomposite resins filled with 12-nm spherical silica particles were investigated for their thermal and mechanical properties as a function of silica loading. The nanoparticles were easily dispersed with minimal aggregation for loadings up to 25wt% as determined using transmission electron m...
Saved in:
Published in: | Polymer (Guilford) 2008-08, Vol.49 (17), p.3805-3815 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Epoxy–nanocomposite resins filled with 12-nm spherical silica particles were investigated for their thermal and mechanical properties as a function of silica loading. The nanoparticles were easily dispersed with minimal aggregation for loadings up to 25wt% as determined using transmission electron microscopy (TEM) and ultra-small-angle X-ray scattering (USAXS). A proportional decrease in cure temperatures and glass transition temperature (for loadings of 10wt% and above) was observed with increased silica loading. The morphology determined by USAXS is consistent with a zone around the silica particles from which neighboring particles are excluded. The “exclusion zone” extends to 10× the particle diameter. For samples with loadings less than 10wt%, increases of 25% in tensile modulus and 30% in fracture toughness were obtained. More highly loaded samples continued to increase in modulus, but decreased in strength and fracture toughness. Overall, the addition of nanosilica is shown as a promising method for property enhancement of aerospace epoxy composite resins.
[Display omitted] |
---|---|
ISSN: | 0032-3861 1873-2291 |
DOI: | 10.1016/j.polymer.2008.06.023 |