Loading…

First principles calculation of finite temperature magnetism in Fe and Fe3C

Density functional calculations have proven to be a useful tool in the study of ground state properties of many materials. The investigation of finite temperature magnetism, on the other hand, has to rely usually on the usage of empirical models that allow the large number of evaluations of the syst...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 2011-04, Vol.109 (7)
Main Authors: Eisenbach, M., Nicholson, D. M., Rusanu, A., Brown, G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c256t-c38a2e58919125ecbd8b68cf3a1943f7f45cfcb32ae56c351b66b0e0084e07a73
cites cdi_FETCH-LOGICAL-c256t-c38a2e58919125ecbd8b68cf3a1943f7f45cfcb32ae56c351b66b0e0084e07a73
container_end_page
container_issue 7
container_start_page
container_title Journal of applied physics
container_volume 109
creator Eisenbach, M.
Nicholson, D. M.
Rusanu, A.
Brown, G.
description Density functional calculations have proven to be a useful tool in the study of ground state properties of many materials. The investigation of finite temperature magnetism, on the other hand, has to rely usually on the usage of empirical models that allow the large number of evaluations of the systems Hamiltonian that are required to obtain the phase space sampling needed to obtain the free energy, specific heat, magnetization, susceptibility, and other quantities as function of temperature. We have demonstrated a solution to this problem that harnesses the computational power of today’s large massively parallel computers by combining a classical Wang–Landau Monte-Carlo calculation [F. Wang and D. P. Landau, Phys. Rev. Lett. 86, 2050 (2001)] with our first principles multiple scattering electronic structure code [Y. Wang et al., Phys. Rev. Lett. 75, 2867 (1995)] that allows the energy calculation of constrained magnetic states [M. Eisenbach et al., Proceedings of the Conference on High Performance Computing, Networking, Storage and Analysis (ACM, New York, 2009)]. We present our calculations of finite temperature properties of Fe and Fe3C using this approach and we find the Curie temperatures to be 980 and 425K, respectively.
doi_str_mv 10.1063/1.3562218
format article
fullrecord <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1018649</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1063_1_3562218</sourcerecordid><originalsourceid>FETCH-LOGICAL-c256t-c38a2e58919125ecbd8b68cf3a1943f7f45cfcb32ae56c351b66b0e0084e07a73</originalsourceid><addsrcrecordid>eNotkLFOwzAURS0EEqUw8AcWG0OKXxw79ogqCohKLDBHzuszGCVOZbsDf09QO93l6Orew9gtiBUILR9gJZWuazBnbAHC2KpVSpyzhRA1VMa29pJd5fwjBICRdsHeNiHlwvcpRAz7gTJHN-BhcCVMkU-e-xBDIV5o3FNy5ZCIj-4rUgl55CHyDXEXd3PI9TW78G7IdHPKJfvcPH2sX6rt-_Pr-nFbYa10qVAaV5MyFizUirDfmV4b9NKBbaRvfaPQYy9rR0qjVNBr3QsSwjQkWtfKJbs79k65hC7jvA-_cYqRsHQgwOjGztD9EcI05ZzId_PH0aXfmej-VXXQnVTJP0ixWn4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>First principles calculation of finite temperature magnetism in Fe and Fe3C</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Eisenbach, M. ; Nicholson, D. M. ; Rusanu, A. ; Brown, G.</creator><creatorcontrib>Eisenbach, M. ; Nicholson, D. M. ; Rusanu, A. ; Brown, G. ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</creatorcontrib><description>Density functional calculations have proven to be a useful tool in the study of ground state properties of many materials. The investigation of finite temperature magnetism, on the other hand, has to rely usually on the usage of empirical models that allow the large number of evaluations of the systems Hamiltonian that are required to obtain the phase space sampling needed to obtain the free energy, specific heat, magnetization, susceptibility, and other quantities as function of temperature. We have demonstrated a solution to this problem that harnesses the computational power of today’s large massively parallel computers by combining a classical Wang–Landau Monte-Carlo calculation [F. Wang and D. P. Landau, Phys. Rev. Lett. 86, 2050 (2001)] with our first principles multiple scattering electronic structure code [Y. Wang et al., Phys. Rev. Lett. 75, 2867 (1995)] that allows the energy calculation of constrained magnetic states [M. Eisenbach et al., Proceedings of the Conference on High Performance Computing, Networking, Storage and Analysis (ACM, New York, 2009)]. We present our calculations of finite temperature properties of Fe and Fe3C using this approach and we find the Curie temperatures to be 980 and 425K, respectively.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.3562218</identifier><language>eng</language><publisher>United States</publisher><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; COMPUTERS ; CURIE POINT ; ELECTRONIC STRUCTURE ; FREE ENERGY ; FUNCTIONALS ; GROUND STATES ; HAMILTONIANS ; MAGNETISM ; MAGNETIZATION ; MULTIPLE SCATTERING ; NEW YORK ; PHASE SPACE ; SAMPLING ; SPECIFIC HEAT ; STORAGE</subject><ispartof>Journal of applied physics, 2011-04, Vol.109 (7)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c256t-c38a2e58919125ecbd8b68cf3a1943f7f45cfcb32ae56c351b66b0e0084e07a73</citedby><cites>FETCH-LOGICAL-c256t-c38a2e58919125ecbd8b68cf3a1943f7f45cfcb32ae56c351b66b0e0084e07a73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1018649$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Eisenbach, M.</creatorcontrib><creatorcontrib>Nicholson, D. M.</creatorcontrib><creatorcontrib>Rusanu, A.</creatorcontrib><creatorcontrib>Brown, G.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</creatorcontrib><title>First principles calculation of finite temperature magnetism in Fe and Fe3C</title><title>Journal of applied physics</title><description>Density functional calculations have proven to be a useful tool in the study of ground state properties of many materials. The investigation of finite temperature magnetism, on the other hand, has to rely usually on the usage of empirical models that allow the large number of evaluations of the systems Hamiltonian that are required to obtain the phase space sampling needed to obtain the free energy, specific heat, magnetization, susceptibility, and other quantities as function of temperature. We have demonstrated a solution to this problem that harnesses the computational power of today’s large massively parallel computers by combining a classical Wang–Landau Monte-Carlo calculation [F. Wang and D. P. Landau, Phys. Rev. Lett. 86, 2050 (2001)] with our first principles multiple scattering electronic structure code [Y. Wang et al., Phys. Rev. Lett. 75, 2867 (1995)] that allows the energy calculation of constrained magnetic states [M. Eisenbach et al., Proceedings of the Conference on High Performance Computing, Networking, Storage and Analysis (ACM, New York, 2009)]. We present our calculations of finite temperature properties of Fe and Fe3C using this approach and we find the Curie temperatures to be 980 and 425K, respectively.</description><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>COMPUTERS</subject><subject>CURIE POINT</subject><subject>ELECTRONIC STRUCTURE</subject><subject>FREE ENERGY</subject><subject>FUNCTIONALS</subject><subject>GROUND STATES</subject><subject>HAMILTONIANS</subject><subject>MAGNETISM</subject><subject>MAGNETIZATION</subject><subject>MULTIPLE SCATTERING</subject><subject>NEW YORK</subject><subject>PHASE SPACE</subject><subject>SAMPLING</subject><subject>SPECIFIC HEAT</subject><subject>STORAGE</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNotkLFOwzAURS0EEqUw8AcWG0OKXxw79ogqCohKLDBHzuszGCVOZbsDf09QO93l6Orew9gtiBUILR9gJZWuazBnbAHC2KpVSpyzhRA1VMa29pJd5fwjBICRdsHeNiHlwvcpRAz7gTJHN-BhcCVMkU-e-xBDIV5o3FNy5ZCIj-4rUgl55CHyDXEXd3PI9TW78G7IdHPKJfvcPH2sX6rt-_Pr-nFbYa10qVAaV5MyFizUirDfmV4b9NKBbaRvfaPQYy9rR0qjVNBr3QsSwjQkWtfKJbs79k65hC7jvA-_cYqRsHQgwOjGztD9EcI05ZzId_PH0aXfmej-VXXQnVTJP0ixWn4</recordid><startdate>20110401</startdate><enddate>20110401</enddate><creator>Eisenbach, M.</creator><creator>Nicholson, D. M.</creator><creator>Rusanu, A.</creator><creator>Brown, G.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20110401</creationdate><title>First principles calculation of finite temperature magnetism in Fe and Fe3C</title><author>Eisenbach, M. ; Nicholson, D. M. ; Rusanu, A. ; Brown, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c256t-c38a2e58919125ecbd8b68cf3a1943f7f45cfcb32ae56c351b66b0e0084e07a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>COMPUTERS</topic><topic>CURIE POINT</topic><topic>ELECTRONIC STRUCTURE</topic><topic>FREE ENERGY</topic><topic>FUNCTIONALS</topic><topic>GROUND STATES</topic><topic>HAMILTONIANS</topic><topic>MAGNETISM</topic><topic>MAGNETIZATION</topic><topic>MULTIPLE SCATTERING</topic><topic>NEW YORK</topic><topic>PHASE SPACE</topic><topic>SAMPLING</topic><topic>SPECIFIC HEAT</topic><topic>STORAGE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eisenbach, M.</creatorcontrib><creatorcontrib>Nicholson, D. M.</creatorcontrib><creatorcontrib>Rusanu, A.</creatorcontrib><creatorcontrib>Brown, G.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eisenbach, M.</au><au>Nicholson, D. M.</au><au>Rusanu, A.</au><au>Brown, G.</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>First principles calculation of finite temperature magnetism in Fe and Fe3C</atitle><jtitle>Journal of applied physics</jtitle><date>2011-04-01</date><risdate>2011</risdate><volume>109</volume><issue>7</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><abstract>Density functional calculations have proven to be a useful tool in the study of ground state properties of many materials. The investigation of finite temperature magnetism, on the other hand, has to rely usually on the usage of empirical models that allow the large number of evaluations of the systems Hamiltonian that are required to obtain the phase space sampling needed to obtain the free energy, specific heat, magnetization, susceptibility, and other quantities as function of temperature. We have demonstrated a solution to this problem that harnesses the computational power of today’s large massively parallel computers by combining a classical Wang–Landau Monte-Carlo calculation [F. Wang and D. P. Landau, Phys. Rev. Lett. 86, 2050 (2001)] with our first principles multiple scattering electronic structure code [Y. Wang et al., Phys. Rev. Lett. 75, 2867 (1995)] that allows the energy calculation of constrained magnetic states [M. Eisenbach et al., Proceedings of the Conference on High Performance Computing, Networking, Storage and Analysis (ACM, New York, 2009)]. We present our calculations of finite temperature properties of Fe and Fe3C using this approach and we find the Curie temperatures to be 980 and 425K, respectively.</abstract><cop>United States</cop><doi>10.1063/1.3562218</doi></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2011-04, Vol.109 (7)
issn 0021-8979
1089-7550
language eng
recordid cdi_osti_scitechconnect_1018649
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
COMPUTERS
CURIE POINT
ELECTRONIC STRUCTURE
FREE ENERGY
FUNCTIONALS
GROUND STATES
HAMILTONIANS
MAGNETISM
MAGNETIZATION
MULTIPLE SCATTERING
NEW YORK
PHASE SPACE
SAMPLING
SPECIFIC HEAT
STORAGE
title First principles calculation of finite temperature magnetism in Fe and Fe3C
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T01%3A07%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=First%20principles%20calculation%20of%20finite%20temperature%20magnetism%20in%20Fe%20and%20Fe3C&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Eisenbach,%20M.&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States).%20Oak%20Ridge%20Leadership%20Computing%20Facility%20(OLCF)&rft.date=2011-04-01&rft.volume=109&rft.issue=7&rft.issn=0021-8979&rft.eissn=1089-7550&rft_id=info:doi/10.1063/1.3562218&rft_dat=%3Ccrossref_osti_%3E10_1063_1_3562218%3C/crossref_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c256t-c38a2e58919125ecbd8b68cf3a1943f7f45cfcb32ae56c351b66b0e0084e07a73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true