Loading…
First principles calculation of finite temperature magnetism in Fe and Fe3C
Density functional calculations have proven to be a useful tool in the study of ground state properties of many materials. The investigation of finite temperature magnetism, on the other hand, has to rely usually on the usage of empirical models that allow the large number of evaluations of the syst...
Saved in:
Published in: | Journal of applied physics 2011-04, Vol.109 (7) |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c256t-c38a2e58919125ecbd8b68cf3a1943f7f45cfcb32ae56c351b66b0e0084e07a73 |
---|---|
cites | cdi_FETCH-LOGICAL-c256t-c38a2e58919125ecbd8b68cf3a1943f7f45cfcb32ae56c351b66b0e0084e07a73 |
container_end_page | |
container_issue | 7 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 109 |
creator | Eisenbach, M. Nicholson, D. M. Rusanu, A. Brown, G. |
description | Density functional calculations have proven to be a useful tool in the study of ground state properties of many materials. The investigation of finite temperature magnetism, on the other hand, has to rely usually on the usage of empirical models that allow the large number of evaluations of the systems Hamiltonian that are required to obtain the phase space sampling needed to obtain the free energy, specific heat, magnetization, susceptibility, and other quantities as function of temperature. We have demonstrated a solution to this problem that harnesses the computational power of today’s large massively parallel computers by combining a classical Wang–Landau Monte-Carlo calculation [F. Wang and D. P. Landau, Phys. Rev. Lett. 86, 2050 (2001)] with our first principles multiple scattering electronic structure code [Y. Wang et al., Phys. Rev. Lett. 75, 2867 (1995)] that allows the energy calculation of constrained magnetic states [M. Eisenbach et al., Proceedings of the Conference on High Performance Computing, Networking, Storage and Analysis (ACM, New York, 2009)]. We present our calculations of finite temperature properties of Fe and Fe3C using this approach and we find the Curie temperatures to be 980 and 425K, respectively. |
doi_str_mv | 10.1063/1.3562218 |
format | article |
fullrecord | <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1018649</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1063_1_3562218</sourcerecordid><originalsourceid>FETCH-LOGICAL-c256t-c38a2e58919125ecbd8b68cf3a1943f7f45cfcb32ae56c351b66b0e0084e07a73</originalsourceid><addsrcrecordid>eNotkLFOwzAURS0EEqUw8AcWG0OKXxw79ogqCohKLDBHzuszGCVOZbsDf09QO93l6Orew9gtiBUILR9gJZWuazBnbAHC2KpVSpyzhRA1VMa29pJd5fwjBICRdsHeNiHlwvcpRAz7gTJHN-BhcCVMkU-e-xBDIV5o3FNy5ZCIj-4rUgl55CHyDXEXd3PI9TW78G7IdHPKJfvcPH2sX6rt-_Pr-nFbYa10qVAaV5MyFizUirDfmV4b9NKBbaRvfaPQYy9rR0qjVNBr3QsSwjQkWtfKJbs79k65hC7jvA-_cYqRsHQgwOjGztD9EcI05ZzId_PH0aXfmej-VXXQnVTJP0ixWn4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>First principles calculation of finite temperature magnetism in Fe and Fe3C</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Eisenbach, M. ; Nicholson, D. M. ; Rusanu, A. ; Brown, G.</creator><creatorcontrib>Eisenbach, M. ; Nicholson, D. M. ; Rusanu, A. ; Brown, G. ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</creatorcontrib><description>Density functional calculations have proven to be a useful tool in the study of ground state properties of many materials. The investigation of finite temperature magnetism, on the other hand, has to rely usually on the usage of empirical models that allow the large number of evaluations of the systems Hamiltonian that are required to obtain the phase space sampling needed to obtain the free energy, specific heat, magnetization, susceptibility, and other quantities as function of temperature. We have demonstrated a solution to this problem that harnesses the computational power of today’s large massively parallel computers by combining a classical Wang–Landau Monte-Carlo calculation [F. Wang and D. P. Landau, Phys. Rev. Lett. 86, 2050 (2001)] with our first principles multiple scattering electronic structure code [Y. Wang et al., Phys. Rev. Lett. 75, 2867 (1995)] that allows the energy calculation of constrained magnetic states [M. Eisenbach et al., Proceedings of the Conference on High Performance Computing, Networking, Storage and Analysis (ACM, New York, 2009)]. We present our calculations of finite temperature properties of Fe and Fe3C using this approach and we find the Curie temperatures to be 980 and 425K, respectively.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.3562218</identifier><language>eng</language><publisher>United States</publisher><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; COMPUTERS ; CURIE POINT ; ELECTRONIC STRUCTURE ; FREE ENERGY ; FUNCTIONALS ; GROUND STATES ; HAMILTONIANS ; MAGNETISM ; MAGNETIZATION ; MULTIPLE SCATTERING ; NEW YORK ; PHASE SPACE ; SAMPLING ; SPECIFIC HEAT ; STORAGE</subject><ispartof>Journal of applied physics, 2011-04, Vol.109 (7)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c256t-c38a2e58919125ecbd8b68cf3a1943f7f45cfcb32ae56c351b66b0e0084e07a73</citedby><cites>FETCH-LOGICAL-c256t-c38a2e58919125ecbd8b68cf3a1943f7f45cfcb32ae56c351b66b0e0084e07a73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1018649$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Eisenbach, M.</creatorcontrib><creatorcontrib>Nicholson, D. M.</creatorcontrib><creatorcontrib>Rusanu, A.</creatorcontrib><creatorcontrib>Brown, G.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</creatorcontrib><title>First principles calculation of finite temperature magnetism in Fe and Fe3C</title><title>Journal of applied physics</title><description>Density functional calculations have proven to be a useful tool in the study of ground state properties of many materials. The investigation of finite temperature magnetism, on the other hand, has to rely usually on the usage of empirical models that allow the large number of evaluations of the systems Hamiltonian that are required to obtain the phase space sampling needed to obtain the free energy, specific heat, magnetization, susceptibility, and other quantities as function of temperature. We have demonstrated a solution to this problem that harnesses the computational power of today’s large massively parallel computers by combining a classical Wang–Landau Monte-Carlo calculation [F. Wang and D. P. Landau, Phys. Rev. Lett. 86, 2050 (2001)] with our first principles multiple scattering electronic structure code [Y. Wang et al., Phys. Rev. Lett. 75, 2867 (1995)] that allows the energy calculation of constrained magnetic states [M. Eisenbach et al., Proceedings of the Conference on High Performance Computing, Networking, Storage and Analysis (ACM, New York, 2009)]. We present our calculations of finite temperature properties of Fe and Fe3C using this approach and we find the Curie temperatures to be 980 and 425K, respectively.</description><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>COMPUTERS</subject><subject>CURIE POINT</subject><subject>ELECTRONIC STRUCTURE</subject><subject>FREE ENERGY</subject><subject>FUNCTIONALS</subject><subject>GROUND STATES</subject><subject>HAMILTONIANS</subject><subject>MAGNETISM</subject><subject>MAGNETIZATION</subject><subject>MULTIPLE SCATTERING</subject><subject>NEW YORK</subject><subject>PHASE SPACE</subject><subject>SAMPLING</subject><subject>SPECIFIC HEAT</subject><subject>STORAGE</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNotkLFOwzAURS0EEqUw8AcWG0OKXxw79ogqCohKLDBHzuszGCVOZbsDf09QO93l6Orew9gtiBUILR9gJZWuazBnbAHC2KpVSpyzhRA1VMa29pJd5fwjBICRdsHeNiHlwvcpRAz7gTJHN-BhcCVMkU-e-xBDIV5o3FNy5ZCIj-4rUgl55CHyDXEXd3PI9TW78G7IdHPKJfvcPH2sX6rt-_Pr-nFbYa10qVAaV5MyFizUirDfmV4b9NKBbaRvfaPQYy9rR0qjVNBr3QsSwjQkWtfKJbs79k65hC7jvA-_cYqRsHQgwOjGztD9EcI05ZzId_PH0aXfmej-VXXQnVTJP0ixWn4</recordid><startdate>20110401</startdate><enddate>20110401</enddate><creator>Eisenbach, M.</creator><creator>Nicholson, D. M.</creator><creator>Rusanu, A.</creator><creator>Brown, G.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20110401</creationdate><title>First principles calculation of finite temperature magnetism in Fe and Fe3C</title><author>Eisenbach, M. ; Nicholson, D. M. ; Rusanu, A. ; Brown, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c256t-c38a2e58919125ecbd8b68cf3a1943f7f45cfcb32ae56c351b66b0e0084e07a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>COMPUTERS</topic><topic>CURIE POINT</topic><topic>ELECTRONIC STRUCTURE</topic><topic>FREE ENERGY</topic><topic>FUNCTIONALS</topic><topic>GROUND STATES</topic><topic>HAMILTONIANS</topic><topic>MAGNETISM</topic><topic>MAGNETIZATION</topic><topic>MULTIPLE SCATTERING</topic><topic>NEW YORK</topic><topic>PHASE SPACE</topic><topic>SAMPLING</topic><topic>SPECIFIC HEAT</topic><topic>STORAGE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eisenbach, M.</creatorcontrib><creatorcontrib>Nicholson, D. M.</creatorcontrib><creatorcontrib>Rusanu, A.</creatorcontrib><creatorcontrib>Brown, G.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eisenbach, M.</au><au>Nicholson, D. M.</au><au>Rusanu, A.</au><au>Brown, G.</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>First principles calculation of finite temperature magnetism in Fe and Fe3C</atitle><jtitle>Journal of applied physics</jtitle><date>2011-04-01</date><risdate>2011</risdate><volume>109</volume><issue>7</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><abstract>Density functional calculations have proven to be a useful tool in the study of ground state properties of many materials. The investigation of finite temperature magnetism, on the other hand, has to rely usually on the usage of empirical models that allow the large number of evaluations of the systems Hamiltonian that are required to obtain the phase space sampling needed to obtain the free energy, specific heat, magnetization, susceptibility, and other quantities as function of temperature. We have demonstrated a solution to this problem that harnesses the computational power of today’s large massively parallel computers by combining a classical Wang–Landau Monte-Carlo calculation [F. Wang and D. P. Landau, Phys. Rev. Lett. 86, 2050 (2001)] with our first principles multiple scattering electronic structure code [Y. Wang et al., Phys. Rev. Lett. 75, 2867 (1995)] that allows the energy calculation of constrained magnetic states [M. Eisenbach et al., Proceedings of the Conference on High Performance Computing, Networking, Storage and Analysis (ACM, New York, 2009)]. We present our calculations of finite temperature properties of Fe and Fe3C using this approach and we find the Curie temperatures to be 980 and 425K, respectively.</abstract><cop>United States</cop><doi>10.1063/1.3562218</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2011-04, Vol.109 (7) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_osti_scitechconnect_1018649 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS COMPUTERS CURIE POINT ELECTRONIC STRUCTURE FREE ENERGY FUNCTIONALS GROUND STATES HAMILTONIANS MAGNETISM MAGNETIZATION MULTIPLE SCATTERING NEW YORK PHASE SPACE SAMPLING SPECIFIC HEAT STORAGE |
title | First principles calculation of finite temperature magnetism in Fe and Fe3C |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T01%3A07%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=First%20principles%20calculation%20of%20finite%20temperature%20magnetism%20in%20Fe%20and%20Fe3C&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Eisenbach,%20M.&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States).%20Oak%20Ridge%20Leadership%20Computing%20Facility%20(OLCF)&rft.date=2011-04-01&rft.volume=109&rft.issue=7&rft.issn=0021-8979&rft.eissn=1089-7550&rft_id=info:doi/10.1063/1.3562218&rft_dat=%3Ccrossref_osti_%3E10_1063_1_3562218%3C/crossref_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c256t-c38a2e58919125ecbd8b68cf3a1943f7f45cfcb32ae56c351b66b0e0084e07a73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |