Loading…

Cloud radar Doppler spectra in drizzling stratiform clouds: 1. Forward modeling and remote sensing applications

Several aspects of spectral broadening and drizzle growth in shallow liquid clouds remain not well understood. Detailed, cloud‐scale observations of microphysics and dynamics are essential to guide and evaluate corresponding modeling efforts. Profiling, millimeter‐wavelength (cloud) radars can provi...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Geophysical Research 2011-07, Vol.116 (D13), p.n/a, Article D13201
Main Authors: Kollias, Pavlos, Rémillard, Jasmine, Luke, Edward, Szyrmer, Wanda
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4090-6577f1d8dd0e46fae378ad21b0f540ebffa0d48a5157b2698216a960a9c528333
cites cdi_FETCH-LOGICAL-c4090-6577f1d8dd0e46fae378ad21b0f540ebffa0d48a5157b2698216a960a9c528333
container_end_page n/a
container_issue D13
container_start_page
container_title Journal of Geophysical Research
container_volume 116
creator Kollias, Pavlos
Rémillard, Jasmine
Luke, Edward
Szyrmer, Wanda
description Several aspects of spectral broadening and drizzle growth in shallow liquid clouds remain not well understood. Detailed, cloud‐scale observations of microphysics and dynamics are essential to guide and evaluate corresponding modeling efforts. Profiling, millimeter‐wavelength (cloud) radars can provide such observations. In particular, the first three moments of the recorded cloud radar Doppler spectra, the radar reflectivity, mean Doppler velocity, and spectrum width, are often used to retrieve cloud microphysical and dynamical properties. Such retrievals are subject to errors introduced by the assumptions made in the inversion process. Here, we introduce two additional morphological parameters of the radar Doppler spectrum, the skewness and kurtosis, in an effort to reduce the retrieval uncertainties. A forward model that emulates observed radar Doppler spectra is constructed and used to investigate these relationships. General, analytical relationships that relate the five radar observables to cloud and drizzle microphysical parameters and cloud turbulence are presented. The relationships are valid for cloud‐only, cloud mixed with drizzle, and drizzle‐only particles in the radar sampling volume and provide a seamless link between observations and cloud microphysics and dynamics. The sensitivity of the five observed parameters to the radar operational parameters such as signal‐to‐noise ratio and Doppler spectra velocity resolution are presented. The predicted values of the five observed radar parameters agree well with the output of the forward model. The novel use of the skewness of the radar Doppler spectrum as an early qualitative predictor of drizzle onset in clouds is introduced. It is found that skewness is a parameter very sensitive to early drizzle generation. In addition, the significance of the five parameters of the cloud radar Doppler spectrum for constraining drizzle microphysical retrievals is discussed. Key Points Description of a new approach of using radar Doppler spectra to study drizzle Provides a new technique for detecting the precipitation onset in stratus Improvement of drizzle quantitative retrievals
doi_str_mv 10.1029/2010JD015237
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1026778</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2506322171</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4090-6577f1d8dd0e46fae378ad21b0f540ebffa0d48a5157b2698216a960a9c528333</originalsourceid><addsrcrecordid>eNp9kMFOGzEQhq2KSo0gtz6A1TMbxt61ve6tTUgKQlRCVJV6sRzb2zps1ou9URqeHocg4MRcLI2-_5vxIPSZwIQAlWcUCFzOgDBaig9oRAnjBaVAj9AISFUXQKn4hMYprSBXxXgFZITCtA0bi6O2OuJZ6PvWRZx6Z4aose-wjf7hofXdX5xyZ_BNiGts9pn0FZMJnoe41dHidbDuCdNdtrl1GBxOrktPrWz1JodDl07Qx0a3yY2f32P0a35-O_1RXP1cXEy_XRWmAgkFZ0I0xNbWgqt4o10pam0pWULDKnDLptFgq1ozwsSScllTwrXkoKVhtC7L8hh9OXhDGrxKxg_O_DOh6_LPVL4XF6J-hfoY7jcuDWoVNrHLeykJVAATEjJ0eoBMDClF16g--rWOu6zZm6R6e_mMlwd861u3e5dVl4ubGeGS7YcUh5RPg_v_ktLxTnFRCqZ-Xy_UH3r9fVbtc-UjNV-S-Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>902705790</pqid></control><display><type>article</type><title>Cloud radar Doppler spectra in drizzling stratiform clouds: 1. Forward modeling and remote sensing applications</title><source>Wiley</source><source>Wiley-Blackwell AGU Digital Library</source><creator>Kollias, Pavlos ; Rémillard, Jasmine ; Luke, Edward ; Szyrmer, Wanda</creator><creatorcontrib>Kollias, Pavlos ; Rémillard, Jasmine ; Luke, Edward ; Szyrmer, Wanda ; BROOKHAVEN NATIONAL LABORATORY (BNL)</creatorcontrib><description>Several aspects of spectral broadening and drizzle growth in shallow liquid clouds remain not well understood. Detailed, cloud‐scale observations of microphysics and dynamics are essential to guide and evaluate corresponding modeling efforts. Profiling, millimeter‐wavelength (cloud) radars can provide such observations. In particular, the first three moments of the recorded cloud radar Doppler spectra, the radar reflectivity, mean Doppler velocity, and spectrum width, are often used to retrieve cloud microphysical and dynamical properties. Such retrievals are subject to errors introduced by the assumptions made in the inversion process. Here, we introduce two additional morphological parameters of the radar Doppler spectrum, the skewness and kurtosis, in an effort to reduce the retrieval uncertainties. A forward model that emulates observed radar Doppler spectra is constructed and used to investigate these relationships. General, analytical relationships that relate the five radar observables to cloud and drizzle microphysical parameters and cloud turbulence are presented. The relationships are valid for cloud‐only, cloud mixed with drizzle, and drizzle‐only particles in the radar sampling volume and provide a seamless link between observations and cloud microphysics and dynamics. The sensitivity of the five observed parameters to the radar operational parameters such as signal‐to‐noise ratio and Doppler spectra velocity resolution are presented. The predicted values of the five observed radar parameters agree well with the output of the forward model. The novel use of the skewness of the radar Doppler spectrum as an early qualitative predictor of drizzle onset in clouds is introduced. It is found that skewness is a parameter very sensitive to early drizzle generation. In addition, the significance of the five parameters of the cloud radar Doppler spectrum for constraining drizzle microphysical retrievals is discussed. Key Points Description of a new approach of using radar Doppler spectra to study drizzle Provides a new technique for detecting the precipitation onset in stratus Improvement of drizzle quantitative retrievals</description><identifier>ISSN: 0148-0227</identifier><identifier>ISSN: 2169-897X</identifier><identifier>EISSN: 2156-2202</identifier><identifier>EISSN: 2169-8996</identifier><identifier>DOI: 10.1029/2010JD015237</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>ASYMMETRY ; Atmospheric boundary layer ; Atmospheric sciences ; CLOUDS ; DISTRIBUTION ; drizzle ; ENVIRONMENTAL SCIENCES ; Geophysics ; LINE BROADENING ; Precipitation ; RADAR ; REFLECTIVITY ; REMOTE SENSING ; RESOLUTION ; SAMPLING ; SENSITIVITY ; SIGNAL-TO-NOISE RATIO ; SIMULATION ; SPECTRA ; STATISTICS ; stratus ; TURBULENCE ; VELOCITY</subject><ispartof>Journal of Geophysical Research, 2011-07, Vol.116 (D13), p.n/a, Article D13201</ispartof><rights>Copyright 2011 by the American Geophysical Union.</rights><rights>Copyright 2011 by American Geophysical Union</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4090-6577f1d8dd0e46fae378ad21b0f540ebffa0d48a5157b2698216a960a9c528333</citedby><cites>FETCH-LOGICAL-c4090-6577f1d8dd0e46fae378ad21b0f540ebffa0d48a5157b2698216a960a9c528333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2010JD015237$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2010JD015237$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,11514,27924,27925,46468,46892</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1026778$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kollias, Pavlos</creatorcontrib><creatorcontrib>Rémillard, Jasmine</creatorcontrib><creatorcontrib>Luke, Edward</creatorcontrib><creatorcontrib>Szyrmer, Wanda</creatorcontrib><creatorcontrib>BROOKHAVEN NATIONAL LABORATORY (BNL)</creatorcontrib><title>Cloud radar Doppler spectra in drizzling stratiform clouds: 1. Forward modeling and remote sensing applications</title><title>Journal of Geophysical Research</title><addtitle>J. Geophys. Res</addtitle><description>Several aspects of spectral broadening and drizzle growth in shallow liquid clouds remain not well understood. Detailed, cloud‐scale observations of microphysics and dynamics are essential to guide and evaluate corresponding modeling efforts. Profiling, millimeter‐wavelength (cloud) radars can provide such observations. In particular, the first three moments of the recorded cloud radar Doppler spectra, the radar reflectivity, mean Doppler velocity, and spectrum width, are often used to retrieve cloud microphysical and dynamical properties. Such retrievals are subject to errors introduced by the assumptions made in the inversion process. Here, we introduce two additional morphological parameters of the radar Doppler spectrum, the skewness and kurtosis, in an effort to reduce the retrieval uncertainties. A forward model that emulates observed radar Doppler spectra is constructed and used to investigate these relationships. General, analytical relationships that relate the five radar observables to cloud and drizzle microphysical parameters and cloud turbulence are presented. The relationships are valid for cloud‐only, cloud mixed with drizzle, and drizzle‐only particles in the radar sampling volume and provide a seamless link between observations and cloud microphysics and dynamics. The sensitivity of the five observed parameters to the radar operational parameters such as signal‐to‐noise ratio and Doppler spectra velocity resolution are presented. The predicted values of the five observed radar parameters agree well with the output of the forward model. The novel use of the skewness of the radar Doppler spectrum as an early qualitative predictor of drizzle onset in clouds is introduced. It is found that skewness is a parameter very sensitive to early drizzle generation. In addition, the significance of the five parameters of the cloud radar Doppler spectrum for constraining drizzle microphysical retrievals is discussed. Key Points Description of a new approach of using radar Doppler spectra to study drizzle Provides a new technique for detecting the precipitation onset in stratus Improvement of drizzle quantitative retrievals</description><subject>ASYMMETRY</subject><subject>Atmospheric boundary layer</subject><subject>Atmospheric sciences</subject><subject>CLOUDS</subject><subject>DISTRIBUTION</subject><subject>drizzle</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>Geophysics</subject><subject>LINE BROADENING</subject><subject>Precipitation</subject><subject>RADAR</subject><subject>REFLECTIVITY</subject><subject>REMOTE SENSING</subject><subject>RESOLUTION</subject><subject>SAMPLING</subject><subject>SENSITIVITY</subject><subject>SIGNAL-TO-NOISE RATIO</subject><subject>SIMULATION</subject><subject>SPECTRA</subject><subject>STATISTICS</subject><subject>stratus</subject><subject>TURBULENCE</subject><subject>VELOCITY</subject><issn>0148-0227</issn><issn>2169-897X</issn><issn>2156-2202</issn><issn>2169-8996</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kMFOGzEQhq2KSo0gtz6A1TMbxt61ve6tTUgKQlRCVJV6sRzb2zps1ou9URqeHocg4MRcLI2-_5vxIPSZwIQAlWcUCFzOgDBaig9oRAnjBaVAj9AISFUXQKn4hMYprSBXxXgFZITCtA0bi6O2OuJZ6PvWRZx6Z4aose-wjf7hofXdX5xyZ_BNiGts9pn0FZMJnoe41dHidbDuCdNdtrl1GBxOrktPrWz1JodDl07Qx0a3yY2f32P0a35-O_1RXP1cXEy_XRWmAgkFZ0I0xNbWgqt4o10pam0pWULDKnDLptFgq1ozwsSScllTwrXkoKVhtC7L8hh9OXhDGrxKxg_O_DOh6_LPVL4XF6J-hfoY7jcuDWoVNrHLeykJVAATEjJ0eoBMDClF16g--rWOu6zZm6R6e_mMlwd861u3e5dVl4ubGeGS7YcUh5RPg_v_ktLxTnFRCqZ-Xy_UH3r9fVbtc-UjNV-S-Q</recordid><startdate>20110716</startdate><enddate>20110716</enddate><creator>Kollias, Pavlos</creator><creator>Rémillard, Jasmine</creator><creator>Luke, Edward</creator><creator>Szyrmer, Wanda</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>OTOTI</scope></search><sort><creationdate>20110716</creationdate><title>Cloud radar Doppler spectra in drizzling stratiform clouds: 1. Forward modeling and remote sensing applications</title><author>Kollias, Pavlos ; Rémillard, Jasmine ; Luke, Edward ; Szyrmer, Wanda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4090-6577f1d8dd0e46fae378ad21b0f540ebffa0d48a5157b2698216a960a9c528333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>ASYMMETRY</topic><topic>Atmospheric boundary layer</topic><topic>Atmospheric sciences</topic><topic>CLOUDS</topic><topic>DISTRIBUTION</topic><topic>drizzle</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>Geophysics</topic><topic>LINE BROADENING</topic><topic>Precipitation</topic><topic>RADAR</topic><topic>REFLECTIVITY</topic><topic>REMOTE SENSING</topic><topic>RESOLUTION</topic><topic>SAMPLING</topic><topic>SENSITIVITY</topic><topic>SIGNAL-TO-NOISE RATIO</topic><topic>SIMULATION</topic><topic>SPECTRA</topic><topic>STATISTICS</topic><topic>stratus</topic><topic>TURBULENCE</topic><topic>VELOCITY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kollias, Pavlos</creatorcontrib><creatorcontrib>Rémillard, Jasmine</creatorcontrib><creatorcontrib>Luke, Edward</creatorcontrib><creatorcontrib>Szyrmer, Wanda</creatorcontrib><creatorcontrib>BROOKHAVEN NATIONAL LABORATORY (BNL)</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest research library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>OSTI.GOV</collection><jtitle>Journal of Geophysical Research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kollias, Pavlos</au><au>Rémillard, Jasmine</au><au>Luke, Edward</au><au>Szyrmer, Wanda</au><aucorp>BROOKHAVEN NATIONAL LABORATORY (BNL)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cloud radar Doppler spectra in drizzling stratiform clouds: 1. Forward modeling and remote sensing applications</atitle><jtitle>Journal of Geophysical Research</jtitle><addtitle>J. Geophys. Res</addtitle><date>2011-07-16</date><risdate>2011</risdate><volume>116</volume><issue>D13</issue><epage>n/a</epage><artnum>D13201</artnum><issn>0148-0227</issn><issn>2169-897X</issn><eissn>2156-2202</eissn><eissn>2169-8996</eissn><abstract>Several aspects of spectral broadening and drizzle growth in shallow liquid clouds remain not well understood. Detailed, cloud‐scale observations of microphysics and dynamics are essential to guide and evaluate corresponding modeling efforts. Profiling, millimeter‐wavelength (cloud) radars can provide such observations. In particular, the first three moments of the recorded cloud radar Doppler spectra, the radar reflectivity, mean Doppler velocity, and spectrum width, are often used to retrieve cloud microphysical and dynamical properties. Such retrievals are subject to errors introduced by the assumptions made in the inversion process. Here, we introduce two additional morphological parameters of the radar Doppler spectrum, the skewness and kurtosis, in an effort to reduce the retrieval uncertainties. A forward model that emulates observed radar Doppler spectra is constructed and used to investigate these relationships. General, analytical relationships that relate the five radar observables to cloud and drizzle microphysical parameters and cloud turbulence are presented. The relationships are valid for cloud‐only, cloud mixed with drizzle, and drizzle‐only particles in the radar sampling volume and provide a seamless link between observations and cloud microphysics and dynamics. The sensitivity of the five observed parameters to the radar operational parameters such as signal‐to‐noise ratio and Doppler spectra velocity resolution are presented. The predicted values of the five observed radar parameters agree well with the output of the forward model. The novel use of the skewness of the radar Doppler spectrum as an early qualitative predictor of drizzle onset in clouds is introduced. It is found that skewness is a parameter very sensitive to early drizzle generation. In addition, the significance of the five parameters of the cloud radar Doppler spectrum for constraining drizzle microphysical retrievals is discussed. Key Points Description of a new approach of using radar Doppler spectra to study drizzle Provides a new technique for detecting the precipitation onset in stratus Improvement of drizzle quantitative retrievals</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2010JD015237</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0148-0227
ispartof Journal of Geophysical Research, 2011-07, Vol.116 (D13), p.n/a, Article D13201
issn 0148-0227
2169-897X
2156-2202
2169-8996
language eng
recordid cdi_osti_scitechconnect_1026778
source Wiley; Wiley-Blackwell AGU Digital Library
subjects ASYMMETRY
Atmospheric boundary layer
Atmospheric sciences
CLOUDS
DISTRIBUTION
drizzle
ENVIRONMENTAL SCIENCES
Geophysics
LINE BROADENING
Precipitation
RADAR
REFLECTIVITY
REMOTE SENSING
RESOLUTION
SAMPLING
SENSITIVITY
SIGNAL-TO-NOISE RATIO
SIMULATION
SPECTRA
STATISTICS
stratus
TURBULENCE
VELOCITY
title Cloud radar Doppler spectra in drizzling stratiform clouds: 1. Forward modeling and remote sensing applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T00%3A01%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cloud%20radar%20Doppler%20spectra%20in%20drizzling%20stratiform%20clouds:%201.%20Forward%20modeling%20and%20remote%20sensing%20applications&rft.jtitle=Journal%20of%20Geophysical%20Research&rft.au=Kollias,%20Pavlos&rft.aucorp=BROOKHAVEN%20NATIONAL%20LABORATORY%20(BNL)&rft.date=2011-07-16&rft.volume=116&rft.issue=D13&rft.epage=n/a&rft.artnum=D13201&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2010JD015237&rft_dat=%3Cproquest_osti_%3E2506322171%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4090-6577f1d8dd0e46fae378ad21b0f540ebffa0d48a5157b2698216a960a9c528333%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=902705790&rft_id=info:pmid/&rfr_iscdi=true