Loading…
Cloud radar Doppler spectra in drizzling stratiform clouds: 1. Forward modeling and remote sensing applications
Several aspects of spectral broadening and drizzle growth in shallow liquid clouds remain not well understood. Detailed, cloud‐scale observations of microphysics and dynamics are essential to guide and evaluate corresponding modeling efforts. Profiling, millimeter‐wavelength (cloud) radars can provi...
Saved in:
Published in: | Journal of Geophysical Research 2011-07, Vol.116 (D13), p.n/a, Article D13201 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4090-6577f1d8dd0e46fae378ad21b0f540ebffa0d48a5157b2698216a960a9c528333 |
---|---|
cites | cdi_FETCH-LOGICAL-c4090-6577f1d8dd0e46fae378ad21b0f540ebffa0d48a5157b2698216a960a9c528333 |
container_end_page | n/a |
container_issue | D13 |
container_start_page | |
container_title | Journal of Geophysical Research |
container_volume | 116 |
creator | Kollias, Pavlos Rémillard, Jasmine Luke, Edward Szyrmer, Wanda |
description | Several aspects of spectral broadening and drizzle growth in shallow liquid clouds remain not well understood. Detailed, cloud‐scale observations of microphysics and dynamics are essential to guide and evaluate corresponding modeling efforts. Profiling, millimeter‐wavelength (cloud) radars can provide such observations. In particular, the first three moments of the recorded cloud radar Doppler spectra, the radar reflectivity, mean Doppler velocity, and spectrum width, are often used to retrieve cloud microphysical and dynamical properties. Such retrievals are subject to errors introduced by the assumptions made in the inversion process. Here, we introduce two additional morphological parameters of the radar Doppler spectrum, the skewness and kurtosis, in an effort to reduce the retrieval uncertainties. A forward model that emulates observed radar Doppler spectra is constructed and used to investigate these relationships. General, analytical relationships that relate the five radar observables to cloud and drizzle microphysical parameters and cloud turbulence are presented. The relationships are valid for cloud‐only, cloud mixed with drizzle, and drizzle‐only particles in the radar sampling volume and provide a seamless link between observations and cloud microphysics and dynamics. The sensitivity of the five observed parameters to the radar operational parameters such as signal‐to‐noise ratio and Doppler spectra velocity resolution are presented. The predicted values of the five observed radar parameters agree well with the output of the forward model. The novel use of the skewness of the radar Doppler spectrum as an early qualitative predictor of drizzle onset in clouds is introduced. It is found that skewness is a parameter very sensitive to early drizzle generation. In addition, the significance of the five parameters of the cloud radar Doppler spectrum for constraining drizzle microphysical retrievals is discussed.
Key Points
Description of a new approach of using radar Doppler spectra to study drizzle
Provides a new technique for detecting the precipitation onset in stratus
Improvement of drizzle quantitative retrievals |
doi_str_mv | 10.1029/2010JD015237 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1026778</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2506322171</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4090-6577f1d8dd0e46fae378ad21b0f540ebffa0d48a5157b2698216a960a9c528333</originalsourceid><addsrcrecordid>eNp9kMFOGzEQhq2KSo0gtz6A1TMbxt61ve6tTUgKQlRCVJV6sRzb2zps1ou9URqeHocg4MRcLI2-_5vxIPSZwIQAlWcUCFzOgDBaig9oRAnjBaVAj9AISFUXQKn4hMYprSBXxXgFZITCtA0bi6O2OuJZ6PvWRZx6Z4aose-wjf7hofXdX5xyZ_BNiGts9pn0FZMJnoe41dHidbDuCdNdtrl1GBxOrktPrWz1JodDl07Qx0a3yY2f32P0a35-O_1RXP1cXEy_XRWmAgkFZ0I0xNbWgqt4o10pam0pWULDKnDLptFgq1ozwsSScllTwrXkoKVhtC7L8hh9OXhDGrxKxg_O_DOh6_LPVL4XF6J-hfoY7jcuDWoVNrHLeykJVAATEjJ0eoBMDClF16g--rWOu6zZm6R6e_mMlwd861u3e5dVl4ubGeGS7YcUh5RPg_v_ktLxTnFRCqZ-Xy_UH3r9fVbtc-UjNV-S-Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>902705790</pqid></control><display><type>article</type><title>Cloud radar Doppler spectra in drizzling stratiform clouds: 1. Forward modeling and remote sensing applications</title><source>Wiley</source><source>Wiley-Blackwell AGU Digital Library</source><creator>Kollias, Pavlos ; Rémillard, Jasmine ; Luke, Edward ; Szyrmer, Wanda</creator><creatorcontrib>Kollias, Pavlos ; Rémillard, Jasmine ; Luke, Edward ; Szyrmer, Wanda ; BROOKHAVEN NATIONAL LABORATORY (BNL)</creatorcontrib><description>Several aspects of spectral broadening and drizzle growth in shallow liquid clouds remain not well understood. Detailed, cloud‐scale observations of microphysics and dynamics are essential to guide and evaluate corresponding modeling efforts. Profiling, millimeter‐wavelength (cloud) radars can provide such observations. In particular, the first three moments of the recorded cloud radar Doppler spectra, the radar reflectivity, mean Doppler velocity, and spectrum width, are often used to retrieve cloud microphysical and dynamical properties. Such retrievals are subject to errors introduced by the assumptions made in the inversion process. Here, we introduce two additional morphological parameters of the radar Doppler spectrum, the skewness and kurtosis, in an effort to reduce the retrieval uncertainties. A forward model that emulates observed radar Doppler spectra is constructed and used to investigate these relationships. General, analytical relationships that relate the five radar observables to cloud and drizzle microphysical parameters and cloud turbulence are presented. The relationships are valid for cloud‐only, cloud mixed with drizzle, and drizzle‐only particles in the radar sampling volume and provide a seamless link between observations and cloud microphysics and dynamics. The sensitivity of the five observed parameters to the radar operational parameters such as signal‐to‐noise ratio and Doppler spectra velocity resolution are presented. The predicted values of the five observed radar parameters agree well with the output of the forward model. The novel use of the skewness of the radar Doppler spectrum as an early qualitative predictor of drizzle onset in clouds is introduced. It is found that skewness is a parameter very sensitive to early drizzle generation. In addition, the significance of the five parameters of the cloud radar Doppler spectrum for constraining drizzle microphysical retrievals is discussed.
Key Points
Description of a new approach of using radar Doppler spectra to study drizzle
Provides a new technique for detecting the precipitation onset in stratus
Improvement of drizzle quantitative retrievals</description><identifier>ISSN: 0148-0227</identifier><identifier>ISSN: 2169-897X</identifier><identifier>EISSN: 2156-2202</identifier><identifier>EISSN: 2169-8996</identifier><identifier>DOI: 10.1029/2010JD015237</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>ASYMMETRY ; Atmospheric boundary layer ; Atmospheric sciences ; CLOUDS ; DISTRIBUTION ; drizzle ; ENVIRONMENTAL SCIENCES ; Geophysics ; LINE BROADENING ; Precipitation ; RADAR ; REFLECTIVITY ; REMOTE SENSING ; RESOLUTION ; SAMPLING ; SENSITIVITY ; SIGNAL-TO-NOISE RATIO ; SIMULATION ; SPECTRA ; STATISTICS ; stratus ; TURBULENCE ; VELOCITY</subject><ispartof>Journal of Geophysical Research, 2011-07, Vol.116 (D13), p.n/a, Article D13201</ispartof><rights>Copyright 2011 by the American Geophysical Union.</rights><rights>Copyright 2011 by American Geophysical Union</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4090-6577f1d8dd0e46fae378ad21b0f540ebffa0d48a5157b2698216a960a9c528333</citedby><cites>FETCH-LOGICAL-c4090-6577f1d8dd0e46fae378ad21b0f540ebffa0d48a5157b2698216a960a9c528333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2010JD015237$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2010JD015237$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,11514,27924,27925,46468,46892</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1026778$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kollias, Pavlos</creatorcontrib><creatorcontrib>Rémillard, Jasmine</creatorcontrib><creatorcontrib>Luke, Edward</creatorcontrib><creatorcontrib>Szyrmer, Wanda</creatorcontrib><creatorcontrib>BROOKHAVEN NATIONAL LABORATORY (BNL)</creatorcontrib><title>Cloud radar Doppler spectra in drizzling stratiform clouds: 1. Forward modeling and remote sensing applications</title><title>Journal of Geophysical Research</title><addtitle>J. Geophys. Res</addtitle><description>Several aspects of spectral broadening and drizzle growth in shallow liquid clouds remain not well understood. Detailed, cloud‐scale observations of microphysics and dynamics are essential to guide and evaluate corresponding modeling efforts. Profiling, millimeter‐wavelength (cloud) radars can provide such observations. In particular, the first three moments of the recorded cloud radar Doppler spectra, the radar reflectivity, mean Doppler velocity, and spectrum width, are often used to retrieve cloud microphysical and dynamical properties. Such retrievals are subject to errors introduced by the assumptions made in the inversion process. Here, we introduce two additional morphological parameters of the radar Doppler spectrum, the skewness and kurtosis, in an effort to reduce the retrieval uncertainties. A forward model that emulates observed radar Doppler spectra is constructed and used to investigate these relationships. General, analytical relationships that relate the five radar observables to cloud and drizzle microphysical parameters and cloud turbulence are presented. The relationships are valid for cloud‐only, cloud mixed with drizzle, and drizzle‐only particles in the radar sampling volume and provide a seamless link between observations and cloud microphysics and dynamics. The sensitivity of the five observed parameters to the radar operational parameters such as signal‐to‐noise ratio and Doppler spectra velocity resolution are presented. The predicted values of the five observed radar parameters agree well with the output of the forward model. The novel use of the skewness of the radar Doppler spectrum as an early qualitative predictor of drizzle onset in clouds is introduced. It is found that skewness is a parameter very sensitive to early drizzle generation. In addition, the significance of the five parameters of the cloud radar Doppler spectrum for constraining drizzle microphysical retrievals is discussed.
Key Points
Description of a new approach of using radar Doppler spectra to study drizzle
Provides a new technique for detecting the precipitation onset in stratus
Improvement of drizzle quantitative retrievals</description><subject>ASYMMETRY</subject><subject>Atmospheric boundary layer</subject><subject>Atmospheric sciences</subject><subject>CLOUDS</subject><subject>DISTRIBUTION</subject><subject>drizzle</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>Geophysics</subject><subject>LINE BROADENING</subject><subject>Precipitation</subject><subject>RADAR</subject><subject>REFLECTIVITY</subject><subject>REMOTE SENSING</subject><subject>RESOLUTION</subject><subject>SAMPLING</subject><subject>SENSITIVITY</subject><subject>SIGNAL-TO-NOISE RATIO</subject><subject>SIMULATION</subject><subject>SPECTRA</subject><subject>STATISTICS</subject><subject>stratus</subject><subject>TURBULENCE</subject><subject>VELOCITY</subject><issn>0148-0227</issn><issn>2169-897X</issn><issn>2156-2202</issn><issn>2169-8996</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kMFOGzEQhq2KSo0gtz6A1TMbxt61ve6tTUgKQlRCVJV6sRzb2zps1ou9URqeHocg4MRcLI2-_5vxIPSZwIQAlWcUCFzOgDBaig9oRAnjBaVAj9AISFUXQKn4hMYprSBXxXgFZITCtA0bi6O2OuJZ6PvWRZx6Z4aose-wjf7hofXdX5xyZ_BNiGts9pn0FZMJnoe41dHidbDuCdNdtrl1GBxOrktPrWz1JodDl07Qx0a3yY2f32P0a35-O_1RXP1cXEy_XRWmAgkFZ0I0xNbWgqt4o10pam0pWULDKnDLptFgq1ozwsSScllTwrXkoKVhtC7L8hh9OXhDGrxKxg_O_DOh6_LPVL4XF6J-hfoY7jcuDWoVNrHLeykJVAATEjJ0eoBMDClF16g--rWOu6zZm6R6e_mMlwd861u3e5dVl4ubGeGS7YcUh5RPg_v_ktLxTnFRCqZ-Xy_UH3r9fVbtc-UjNV-S-Q</recordid><startdate>20110716</startdate><enddate>20110716</enddate><creator>Kollias, Pavlos</creator><creator>Rémillard, Jasmine</creator><creator>Luke, Edward</creator><creator>Szyrmer, Wanda</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>OTOTI</scope></search><sort><creationdate>20110716</creationdate><title>Cloud radar Doppler spectra in drizzling stratiform clouds: 1. Forward modeling and remote sensing applications</title><author>Kollias, Pavlos ; Rémillard, Jasmine ; Luke, Edward ; Szyrmer, Wanda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4090-6577f1d8dd0e46fae378ad21b0f540ebffa0d48a5157b2698216a960a9c528333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>ASYMMETRY</topic><topic>Atmospheric boundary layer</topic><topic>Atmospheric sciences</topic><topic>CLOUDS</topic><topic>DISTRIBUTION</topic><topic>drizzle</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>Geophysics</topic><topic>LINE BROADENING</topic><topic>Precipitation</topic><topic>RADAR</topic><topic>REFLECTIVITY</topic><topic>REMOTE SENSING</topic><topic>RESOLUTION</topic><topic>SAMPLING</topic><topic>SENSITIVITY</topic><topic>SIGNAL-TO-NOISE RATIO</topic><topic>SIMULATION</topic><topic>SPECTRA</topic><topic>STATISTICS</topic><topic>stratus</topic><topic>TURBULENCE</topic><topic>VELOCITY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kollias, Pavlos</creatorcontrib><creatorcontrib>Rémillard, Jasmine</creatorcontrib><creatorcontrib>Luke, Edward</creatorcontrib><creatorcontrib>Szyrmer, Wanda</creatorcontrib><creatorcontrib>BROOKHAVEN NATIONAL LABORATORY (BNL)</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest research library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>OSTI.GOV</collection><jtitle>Journal of Geophysical Research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kollias, Pavlos</au><au>Rémillard, Jasmine</au><au>Luke, Edward</au><au>Szyrmer, Wanda</au><aucorp>BROOKHAVEN NATIONAL LABORATORY (BNL)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cloud radar Doppler spectra in drizzling stratiform clouds: 1. Forward modeling and remote sensing applications</atitle><jtitle>Journal of Geophysical Research</jtitle><addtitle>J. Geophys. Res</addtitle><date>2011-07-16</date><risdate>2011</risdate><volume>116</volume><issue>D13</issue><epage>n/a</epage><artnum>D13201</artnum><issn>0148-0227</issn><issn>2169-897X</issn><eissn>2156-2202</eissn><eissn>2169-8996</eissn><abstract>Several aspects of spectral broadening and drizzle growth in shallow liquid clouds remain not well understood. Detailed, cloud‐scale observations of microphysics and dynamics are essential to guide and evaluate corresponding modeling efforts. Profiling, millimeter‐wavelength (cloud) radars can provide such observations. In particular, the first three moments of the recorded cloud radar Doppler spectra, the radar reflectivity, mean Doppler velocity, and spectrum width, are often used to retrieve cloud microphysical and dynamical properties. Such retrievals are subject to errors introduced by the assumptions made in the inversion process. Here, we introduce two additional morphological parameters of the radar Doppler spectrum, the skewness and kurtosis, in an effort to reduce the retrieval uncertainties. A forward model that emulates observed radar Doppler spectra is constructed and used to investigate these relationships. General, analytical relationships that relate the five radar observables to cloud and drizzle microphysical parameters and cloud turbulence are presented. The relationships are valid for cloud‐only, cloud mixed with drizzle, and drizzle‐only particles in the radar sampling volume and provide a seamless link between observations and cloud microphysics and dynamics. The sensitivity of the five observed parameters to the radar operational parameters such as signal‐to‐noise ratio and Doppler spectra velocity resolution are presented. The predicted values of the five observed radar parameters agree well with the output of the forward model. The novel use of the skewness of the radar Doppler spectrum as an early qualitative predictor of drizzle onset in clouds is introduced. It is found that skewness is a parameter very sensitive to early drizzle generation. In addition, the significance of the five parameters of the cloud radar Doppler spectrum for constraining drizzle microphysical retrievals is discussed.
Key Points
Description of a new approach of using radar Doppler spectra to study drizzle
Provides a new technique for detecting the precipitation onset in stratus
Improvement of drizzle quantitative retrievals</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2010JD015237</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0148-0227 |
ispartof | Journal of Geophysical Research, 2011-07, Vol.116 (D13), p.n/a, Article D13201 |
issn | 0148-0227 2169-897X 2156-2202 2169-8996 |
language | eng |
recordid | cdi_osti_scitechconnect_1026778 |
source | Wiley; Wiley-Blackwell AGU Digital Library |
subjects | ASYMMETRY Atmospheric boundary layer Atmospheric sciences CLOUDS DISTRIBUTION drizzle ENVIRONMENTAL SCIENCES Geophysics LINE BROADENING Precipitation RADAR REFLECTIVITY REMOTE SENSING RESOLUTION SAMPLING SENSITIVITY SIGNAL-TO-NOISE RATIO SIMULATION SPECTRA STATISTICS stratus TURBULENCE VELOCITY |
title | Cloud radar Doppler spectra in drizzling stratiform clouds: 1. Forward modeling and remote sensing applications |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T00%3A01%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cloud%20radar%20Doppler%20spectra%20in%20drizzling%20stratiform%20clouds:%201.%20Forward%20modeling%20and%20remote%20sensing%20applications&rft.jtitle=Journal%20of%20Geophysical%20Research&rft.au=Kollias,%20Pavlos&rft.aucorp=BROOKHAVEN%20NATIONAL%20LABORATORY%20(BNL)&rft.date=2011-07-16&rft.volume=116&rft.issue=D13&rft.epage=n/a&rft.artnum=D13201&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2010JD015237&rft_dat=%3Cproquest_osti_%3E2506322171%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4090-6577f1d8dd0e46fae378ad21b0f540ebffa0d48a5157b2698216a960a9c528333%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=902705790&rft_id=info:pmid/&rfr_iscdi=true |