Loading…

Effect of Bubbles on Liquid Nitrogen Breakdown in Plane-Plane Electrode Geometry From 100-250 kPa

Liquid nitrogen (LN 2 ) is used as the cryogen and dielectric for many high temperature superconducting, high voltage applications. When a quench in the superconductor occurs, bubbles are generated which can affect the dielectric breakdown properties of the LN 2 . Experiments were performed using pl...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on applied superconductivity 2011-06, Vol.21 (3), p.1892-1895
Main Authors: Sauers, I, James, R, Ellis, A, Tuncer, E, Polizos, G, Pace, M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c349t-2107424d7a1c423c37a5d3c909b5fb59f1df3dc3961b496b0305355dc0ad8e063
cites cdi_FETCH-LOGICAL-c349t-2107424d7a1c423c37a5d3c909b5fb59f1df3dc3961b496b0305355dc0ad8e063
container_end_page 1895
container_issue 3
container_start_page 1892
container_title IEEE transactions on applied superconductivity
container_volume 21
creator Sauers, I
James, R
Ellis, A
Tuncer, E
Polizos, G
Pace, M
description Liquid nitrogen (LN 2 ) is used as the cryogen and dielectric for many high temperature superconducting, high voltage applications. When a quench in the superconductor occurs, bubbles are generated which can affect the dielectric breakdown properties of the LN 2 . Experiments were performed using plane-plane electrode geometry where bubbles were introduced into the gap through a pinhole in the ground electrode. Bubbles were generated using one or more kapton heaters producing heater powers up to 30 W. Pressure was varied from 100-250 kPa. Breakdown strength was found to be relatively constant up to a given heater power and pressure at which the breakdown strength drops to a low value depending on the pressure. After the drop the breakdown strength continues to drop gradually at higher heater power. This is particularly illustrated at 100 kPa. After the drop in breakdown strength the breakdown is believed to be due to the formation of a vapor bridge. Also the heater power at which the breakdown strength changes from that of LN 2 to that of gaseous nitrogen increases with increasing pressure. The data can provide design constraints for high temperature superconducting fault current limiters (FCLs) so that the formation of a vapor bridge can be suppressed or avoided.
doi_str_mv 10.1109/TASC.2010.2088351
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1036583</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5639052</ieee_id><sourcerecordid>2559475741</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-2107424d7a1c423c37a5d3c909b5fb59f1df3dc3961b496b0305355dc0ad8e063</originalsourceid><addsrcrecordid>eNpFkN1rFDEUxQdRsFb_APElCD5Ovfm4M8lju2xrYdGC9Tlk8qFpZ5M2mUX635t1l_YlySW_c-7hdN1HCmeUgvp6e_5zdcagjQyk5EhfdScUUfYMKb5ub0DaS8b42-5drXcAVEiBJ51Zh-DtQnIgF7tpmn0lOZFNfNxFR77HpeTfPpGL4s29y38TiYnczCb5_v9J1nMTl-w8ufJ565fyRC5L3hIK0DYDub8x77s3wczVfzjep92vy_Xt6lu_-XF1vTrf9JYLtfSMwiiYcKOhVjBu-WjQcatATRgmVIG6wJ3laqCTUMMEHJAjOgvGSQ8DP-0-H3xzXaKuNi7e_rE5pZZQU-ADSv4CPZT8uPN10Xd5V1LLpRXFQfJxZA2iB8iWXGvxQT-UuDXlqdnofdt637bet62PbTfNl6OxqdbMoZhkY30WMsFGgVQ27tOBi977528cuAJk_B_4SIS4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>915683772</pqid></control><display><type>article</type><title>Effect of Bubbles on Liquid Nitrogen Breakdown in Plane-Plane Electrode Geometry From 100-250 kPa</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Sauers, I ; James, R ; Ellis, A ; Tuncer, E ; Polizos, G ; Pace, M</creator><creatorcontrib>Sauers, I ; James, R ; Ellis, A ; Tuncer, E ; Polizos, G ; Pace, M ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>Liquid nitrogen (LN 2 ) is used as the cryogen and dielectric for many high temperature superconducting, high voltage applications. When a quench in the superconductor occurs, bubbles are generated which can affect the dielectric breakdown properties of the LN 2 . Experiments were performed using plane-plane electrode geometry where bubbles were introduced into the gap through a pinhole in the ground electrode. Bubbles were generated using one or more kapton heaters producing heater powers up to 30 W. Pressure was varied from 100-250 kPa. Breakdown strength was found to be relatively constant up to a given heater power and pressure at which the breakdown strength drops to a low value depending on the pressure. After the drop the breakdown strength continues to drop gradually at higher heater power. This is particularly illustrated at 100 kPa. After the drop in breakdown strength the breakdown is believed to be due to the formation of a vapor bridge. Also the heater power at which the breakdown strength changes from that of LN 2 to that of gaseous nitrogen increases with increasing pressure. The data can provide design constraints for high temperature superconducting fault current limiters (FCLs) so that the formation of a vapor bridge can be suppressed or avoided.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2010.2088351</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; BREAKDOWN ; Bridge circuits ; BUBBLES ; CRYOGENIC FLUIDS ; CURRENT LIMITERS ; DESIGN ; DIELECTRIC MATERIALS ; Electric breakdown ; Electric power plants ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; ELECTRODES ; Electromagnets ; Electronics ; Exact sciences and technology ; FCL ; GEOMETRY ; HEATERS ; Heating ; High temperature ; High temperature superconductors ; MATERIALS SCIENCE ; Miscellaneous ; NITROGEN ; quench ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Superconducting devices ; SUPERCONDUCTORS ; Various equipment and components ; {\rm LN}_{2}</subject><ispartof>IEEE transactions on applied superconductivity, 2011-06, Vol.21 (3), p.1892-1895</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-2107424d7a1c423c37a5d3c909b5fb59f1df3dc3961b496b0305355dc0ad8e063</citedby><cites>FETCH-LOGICAL-c349t-2107424d7a1c423c37a5d3c909b5fb59f1df3dc3961b496b0305355dc0ad8e063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5639052$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,309,310,314,776,780,785,786,881,23909,23910,25118,27901,27902,54771</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24274518$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1036583$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Sauers, I</creatorcontrib><creatorcontrib>James, R</creatorcontrib><creatorcontrib>Ellis, A</creatorcontrib><creatorcontrib>Tuncer, E</creatorcontrib><creatorcontrib>Polizos, G</creatorcontrib><creatorcontrib>Pace, M</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Effect of Bubbles on Liquid Nitrogen Breakdown in Plane-Plane Electrode Geometry From 100-250 kPa</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>Liquid nitrogen (LN 2 ) is used as the cryogen and dielectric for many high temperature superconducting, high voltage applications. When a quench in the superconductor occurs, bubbles are generated which can affect the dielectric breakdown properties of the LN 2 . Experiments were performed using plane-plane electrode geometry where bubbles were introduced into the gap through a pinhole in the ground electrode. Bubbles were generated using one or more kapton heaters producing heater powers up to 30 W. Pressure was varied from 100-250 kPa. Breakdown strength was found to be relatively constant up to a given heater power and pressure at which the breakdown strength drops to a low value depending on the pressure. After the drop the breakdown strength continues to drop gradually at higher heater power. This is particularly illustrated at 100 kPa. After the drop in breakdown strength the breakdown is believed to be due to the formation of a vapor bridge. Also the heater power at which the breakdown strength changes from that of LN 2 to that of gaseous nitrogen increases with increasing pressure. The data can provide design constraints for high temperature superconducting fault current limiters (FCLs) so that the formation of a vapor bridge can be suppressed or avoided.</description><subject>Applied sciences</subject><subject>BREAKDOWN</subject><subject>Bridge circuits</subject><subject>BUBBLES</subject><subject>CRYOGENIC FLUIDS</subject><subject>CURRENT LIMITERS</subject><subject>DESIGN</subject><subject>DIELECTRIC MATERIALS</subject><subject>Electric breakdown</subject><subject>Electric power plants</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>ELECTRODES</subject><subject>Electromagnets</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>FCL</subject><subject>GEOMETRY</subject><subject>HEATERS</subject><subject>Heating</subject><subject>High temperature</subject><subject>High temperature superconductors</subject><subject>MATERIALS SCIENCE</subject><subject>Miscellaneous</subject><subject>NITROGEN</subject><subject>quench</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Superconducting devices</subject><subject>SUPERCONDUCTORS</subject><subject>Various equipment and components</subject><subject>{\rm LN}_{2}</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNpFkN1rFDEUxQdRsFb_APElCD5Ovfm4M8lju2xrYdGC9Tlk8qFpZ5M2mUX635t1l_YlySW_c-7hdN1HCmeUgvp6e_5zdcagjQyk5EhfdScUUfYMKb5ub0DaS8b42-5drXcAVEiBJ51Zh-DtQnIgF7tpmn0lOZFNfNxFR77HpeTfPpGL4s29y38TiYnczCb5_v9J1nMTl-w8ufJ565fyRC5L3hIK0DYDub8x77s3wczVfzjep92vy_Xt6lu_-XF1vTrf9JYLtfSMwiiYcKOhVjBu-WjQcatATRgmVIG6wJ3laqCTUMMEHJAjOgvGSQ8DP-0-H3xzXaKuNi7e_rE5pZZQU-ADSv4CPZT8uPN10Xd5V1LLpRXFQfJxZA2iB8iWXGvxQT-UuDXlqdnofdt637bet62PbTfNl6OxqdbMoZhkY30WMsFGgVQ27tOBi977528cuAJk_B_4SIS4</recordid><startdate>20110601</startdate><enddate>20110601</enddate><creator>Sauers, I</creator><creator>James, R</creator><creator>Ellis, A</creator><creator>Tuncer, E</creator><creator>Polizos, G</creator><creator>Pace, M</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20110601</creationdate><title>Effect of Bubbles on Liquid Nitrogen Breakdown in Plane-Plane Electrode Geometry From 100-250 kPa</title><author>Sauers, I ; James, R ; Ellis, A ; Tuncer, E ; Polizos, G ; Pace, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-2107424d7a1c423c37a5d3c909b5fb59f1df3dc3961b496b0305355dc0ad8e063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>BREAKDOWN</topic><topic>Bridge circuits</topic><topic>BUBBLES</topic><topic>CRYOGENIC FLUIDS</topic><topic>CURRENT LIMITERS</topic><topic>DESIGN</topic><topic>DIELECTRIC MATERIALS</topic><topic>Electric breakdown</topic><topic>Electric power plants</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>ELECTRODES</topic><topic>Electromagnets</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>FCL</topic><topic>GEOMETRY</topic><topic>HEATERS</topic><topic>Heating</topic><topic>High temperature</topic><topic>High temperature superconductors</topic><topic>MATERIALS SCIENCE</topic><topic>Miscellaneous</topic><topic>NITROGEN</topic><topic>quench</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Superconducting devices</topic><topic>SUPERCONDUCTORS</topic><topic>Various equipment and components</topic><topic>{\rm LN}_{2}</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sauers, I</creatorcontrib><creatorcontrib>James, R</creatorcontrib><creatorcontrib>Ellis, A</creatorcontrib><creatorcontrib>Tuncer, E</creatorcontrib><creatorcontrib>Polizos, G</creatorcontrib><creatorcontrib>Pace, M</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL) - Journals and E-Books</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sauers, I</au><au>James, R</au><au>Ellis, A</au><au>Tuncer, E</au><au>Polizos, G</au><au>Pace, M</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Bubbles on Liquid Nitrogen Breakdown in Plane-Plane Electrode Geometry From 100-250 kPa</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2011-06-01</date><risdate>2011</risdate><volume>21</volume><issue>3</issue><spage>1892</spage><epage>1895</epage><pages>1892-1895</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>Liquid nitrogen (LN 2 ) is used as the cryogen and dielectric for many high temperature superconducting, high voltage applications. When a quench in the superconductor occurs, bubbles are generated which can affect the dielectric breakdown properties of the LN 2 . Experiments were performed using plane-plane electrode geometry where bubbles were introduced into the gap through a pinhole in the ground electrode. Bubbles were generated using one or more kapton heaters producing heater powers up to 30 W. Pressure was varied from 100-250 kPa. Breakdown strength was found to be relatively constant up to a given heater power and pressure at which the breakdown strength drops to a low value depending on the pressure. After the drop the breakdown strength continues to drop gradually at higher heater power. This is particularly illustrated at 100 kPa. After the drop in breakdown strength the breakdown is believed to be due to the formation of a vapor bridge. Also the heater power at which the breakdown strength changes from that of LN 2 to that of gaseous nitrogen increases with increasing pressure. The data can provide design constraints for high temperature superconducting fault current limiters (FCLs) so that the formation of a vapor bridge can be suppressed or avoided.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TASC.2010.2088351</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1051-8223
ispartof IEEE transactions on applied superconductivity, 2011-06, Vol.21 (3), p.1892-1895
issn 1051-8223
1558-2515
language eng
recordid cdi_osti_scitechconnect_1036583
source IEEE Electronic Library (IEL) Journals
subjects Applied sciences
BREAKDOWN
Bridge circuits
BUBBLES
CRYOGENIC FLUIDS
CURRENT LIMITERS
DESIGN
DIELECTRIC MATERIALS
Electric breakdown
Electric power plants
Electrical engineering. Electrical power engineering
Electrical power engineering
ELECTRODES
Electromagnets
Electronics
Exact sciences and technology
FCL
GEOMETRY
HEATERS
Heating
High temperature
High temperature superconductors
MATERIALS SCIENCE
Miscellaneous
NITROGEN
quench
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Superconducting devices
SUPERCONDUCTORS
Various equipment and components
{\rm LN}_{2}
title Effect of Bubbles on Liquid Nitrogen Breakdown in Plane-Plane Electrode Geometry From 100-250 kPa
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T13%3A51%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Bubbles%20on%20Liquid%20Nitrogen%20Breakdown%20in%20Plane-Plane%20Electrode%20Geometry%20From%20100-250%20kPa&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Sauers,%20I&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2011-06-01&rft.volume=21&rft.issue=3&rft.spage=1892&rft.epage=1895&rft.pages=1892-1895&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2010.2088351&rft_dat=%3Cproquest_osti_%3E2559475741%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-2107424d7a1c423c37a5d3c909b5fb59f1df3dc3961b496b0305355dc0ad8e063%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=915683772&rft_id=info:pmid/&rft_ieee_id=5639052&rfr_iscdi=true