Loading…

Less Costly Catalysts for Controlling Engine Emissions

Perovskite oxide catalysts may be able to control emissions from more fuel-efficient internal combustion engines and replace expensive noble metals. Lowering the fuel consumption of transportation vehicles could decrease both emissions of greenhouse gases and our dependence on fossil fuels. One way...

Full description

Saved in:
Bibliographic Details
Published in:Science (American Association for the Advancement of Science) 2010-03, Vol.327 (5973), p.1584-1585
Main Author: Parks, James E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c447t-7e0d61af501504ef1be8c934fb4accac0537363fa9eddd48de04a5b61cac1bba3
cites cdi_FETCH-LOGICAL-c447t-7e0d61af501504ef1be8c934fb4accac0537363fa9eddd48de04a5b61cac1bba3
container_end_page 1585
container_issue 5973
container_start_page 1584
container_title Science (American Association for the Advancement of Science)
container_volume 327
creator Parks, James E.
description Perovskite oxide catalysts may be able to control emissions from more fuel-efficient internal combustion engines and replace expensive noble metals. Lowering the fuel consumption of transportation vehicles could decrease both emissions of greenhouse gases and our dependence on fossil fuels. One way to increase the fuel efficiency of internal combustion engines is to run them “lean,” in the presence of more air than needed to burn all of the fuel. It may seem strange that engines are usually designed to run with fuel and air at stoichiometric balance, or even fuel rich. However, the way emissions have been controlled with catalytic converters has required some unburned fuel in the exhaust, especially for controlling the nitrogen oxide pollutants NO and NO 2 (called NO x ). On page 1624 of this issue, Kim et al. ( 1 ) report encouraging results for catalysts that can process NO x in lean-burn engines. These perovskite oxide catalysts may help reduce or even eliminate the need for expensive and scarce platinum group metals (PGMs) in emissioncontrol catalysts.
doi_str_mv 10.1126/science.1187154
format article
fullrecord <record><control><sourceid>jstor_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1038081</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40544413</jstor_id><sourcerecordid>40544413</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-7e0d61af501504ef1be8c934fb4accac0537363fa9eddd48de04a5b61cac1bba3</originalsourceid><addsrcrecordid>eNqFkT1PAzEMhiMEEqUwMyGdWJiOOs3X3YhO5UOqxAJzlMvlylXXpMTp0H9PUKsyMlm2H9uv9RJyS-GR0rmcoR2cty4nlaKCn5EJhVqU9RzYOZkAMFlWoMQluUJcA-RezSZELh1i0QRM475oTDLjHhMWfYi56FMM4zj4VbHwq8G7YrEZEIfg8Zpc9GZEd3OMU_L5vPhoXsvl-8tb87QsLecqlcpBJ6npBVAB3PW0dZWtGe9bbqw1FgRTTLLe1K7rOl51DrgRraS5R9vWsCm5P-zNAgedX0zOftngvbNJU2AVVDRDDwdoG8P3zmHSWaZ142i8CzvUigtJKcun_ieZqBWX9O_wiVyHXfT5V63knAGtK56h2QGyMSBG1-ttHDYm7rM0_WuKPpqij6bkibvDxBpTiCecg-CcZ4k_EL2JvA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>762301984</pqid></control><display><type>article</type><title>Less Costly Catalysts for Controlling Engine Emissions</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Science Online_科学在线</source><source>Alma/SFX Local Collection</source><creator>Parks, James E.</creator><creatorcontrib>Parks, James E. ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Fuels, Engines and Emissions Research Center (FEERC)</creatorcontrib><description>Perovskite oxide catalysts may be able to control emissions from more fuel-efficient internal combustion engines and replace expensive noble metals. Lowering the fuel consumption of transportation vehicles could decrease both emissions of greenhouse gases and our dependence on fossil fuels. One way to increase the fuel efficiency of internal combustion engines is to run them “lean,” in the presence of more air than needed to burn all of the fuel. It may seem strange that engines are usually designed to run with fuel and air at stoichiometric balance, or even fuel rich. However, the way emissions have been controlled with catalytic converters has required some unburned fuel in the exhaust, especially for controlling the nitrogen oxide pollutants NO and NO 2 (called NO x ). On page 1624 of this issue, Kim et al. ( 1 ) report encouraging results for catalysts that can process NO x in lean-burn engines. These perovskite oxide catalysts may help reduce or even eliminate the need for expensive and scarce platinum group metals (PGMs) in emissioncontrol catalysts.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1187154</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington: American Association for the Advancement of Science</publisher><subject>ADVANCED PROPULSION SYSTEMS ; AIR ; Automotive engineering ; Carbon dioxide emissions ; CATALYSTS ; CATALYTIC CONVERTERS ; Diesel exhaust ; Diesel vehicles ; EFFICIENCY ; Emission control systems ; Emission standards ; Emissions reduction ; ENGINES ; FOSSIL FUELS ; FUEL CONSUMPTION ; Fuels ; GREENHOUSE GASES ; INTERNAL COMBUSTION ENGINES ; NITROGEN OXIDES ; OXIDES ; PEROVSKITE ; Perspectives ; PLATINUM ; POLLUTANTS</subject><ispartof>Science (American Association for the Advancement of Science), 2010-03, Vol.327 (5973), p.1584-1585</ispartof><rights>Copyright 2010 American Association for the Advancement of Science</rights><rights>Copyright © 2010, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-7e0d61af501504ef1be8c934fb4accac0537363fa9eddd48de04a5b61cac1bba3</citedby><cites>FETCH-LOGICAL-c447t-7e0d61af501504ef1be8c934fb4accac0537363fa9eddd48de04a5b61cac1bba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40544413$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40544413$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,777,781,882,2871,2872,27905,27906,58219,58452</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1038081$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Parks, James E.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Fuels, Engines and Emissions Research Center (FEERC)</creatorcontrib><title>Less Costly Catalysts for Controlling Engine Emissions</title><title>Science (American Association for the Advancement of Science)</title><description>Perovskite oxide catalysts may be able to control emissions from more fuel-efficient internal combustion engines and replace expensive noble metals. Lowering the fuel consumption of transportation vehicles could decrease both emissions of greenhouse gases and our dependence on fossil fuels. One way to increase the fuel efficiency of internal combustion engines is to run them “lean,” in the presence of more air than needed to burn all of the fuel. It may seem strange that engines are usually designed to run with fuel and air at stoichiometric balance, or even fuel rich. However, the way emissions have been controlled with catalytic converters has required some unburned fuel in the exhaust, especially for controlling the nitrogen oxide pollutants NO and NO 2 (called NO x ). On page 1624 of this issue, Kim et al. ( 1 ) report encouraging results for catalysts that can process NO x in lean-burn engines. These perovskite oxide catalysts may help reduce or even eliminate the need for expensive and scarce platinum group metals (PGMs) in emissioncontrol catalysts.</description><subject>ADVANCED PROPULSION SYSTEMS</subject><subject>AIR</subject><subject>Automotive engineering</subject><subject>Carbon dioxide emissions</subject><subject>CATALYSTS</subject><subject>CATALYTIC CONVERTERS</subject><subject>Diesel exhaust</subject><subject>Diesel vehicles</subject><subject>EFFICIENCY</subject><subject>Emission control systems</subject><subject>Emission standards</subject><subject>Emissions reduction</subject><subject>ENGINES</subject><subject>FOSSIL FUELS</subject><subject>FUEL CONSUMPTION</subject><subject>Fuels</subject><subject>GREENHOUSE GASES</subject><subject>INTERNAL COMBUSTION ENGINES</subject><subject>NITROGEN OXIDES</subject><subject>OXIDES</subject><subject>PEROVSKITE</subject><subject>Perspectives</subject><subject>PLATINUM</subject><subject>POLLUTANTS</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkT1PAzEMhiMEEqUwMyGdWJiOOs3X3YhO5UOqxAJzlMvlylXXpMTp0H9PUKsyMlm2H9uv9RJyS-GR0rmcoR2cty4nlaKCn5EJhVqU9RzYOZkAMFlWoMQluUJcA-RezSZELh1i0QRM475oTDLjHhMWfYi56FMM4zj4VbHwq8G7YrEZEIfg8Zpc9GZEd3OMU_L5vPhoXsvl-8tb87QsLecqlcpBJ6npBVAB3PW0dZWtGe9bbqw1FgRTTLLe1K7rOl51DrgRraS5R9vWsCm5P-zNAgedX0zOftngvbNJU2AVVDRDDwdoG8P3zmHSWaZ142i8CzvUigtJKcun_ieZqBWX9O_wiVyHXfT5V63knAGtK56h2QGyMSBG1-ttHDYm7rM0_WuKPpqij6bkibvDxBpTiCecg-CcZ4k_EL2JvA</recordid><startdate>20100326</startdate><enddate>20100326</enddate><creator>Parks, James E.</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7ST</scope><scope>7TV</scope><scope>7U6</scope><scope>OTOTI</scope></search><sort><creationdate>20100326</creationdate><title>Less Costly Catalysts for Controlling Engine Emissions</title><author>Parks, James E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-7e0d61af501504ef1be8c934fb4accac0537363fa9eddd48de04a5b61cac1bba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>ADVANCED PROPULSION SYSTEMS</topic><topic>AIR</topic><topic>Automotive engineering</topic><topic>Carbon dioxide emissions</topic><topic>CATALYSTS</topic><topic>CATALYTIC CONVERTERS</topic><topic>Diesel exhaust</topic><topic>Diesel vehicles</topic><topic>EFFICIENCY</topic><topic>Emission control systems</topic><topic>Emission standards</topic><topic>Emissions reduction</topic><topic>ENGINES</topic><topic>FOSSIL FUELS</topic><topic>FUEL CONSUMPTION</topic><topic>Fuels</topic><topic>GREENHOUSE GASES</topic><topic>INTERNAL COMBUSTION ENGINES</topic><topic>NITROGEN OXIDES</topic><topic>OXIDES</topic><topic>PEROVSKITE</topic><topic>Perspectives</topic><topic>PLATINUM</topic><topic>POLLUTANTS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parks, James E.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Fuels, Engines and Emissions Research Center (FEERC)</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>Pollution Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parks, James E.</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Fuels, Engines and Emissions Research Center (FEERC)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Less Costly Catalysts for Controlling Engine Emissions</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><date>2010-03-26</date><risdate>2010</risdate><volume>327</volume><issue>5973</issue><spage>1584</spage><epage>1585</epage><pages>1584-1585</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>Perovskite oxide catalysts may be able to control emissions from more fuel-efficient internal combustion engines and replace expensive noble metals. Lowering the fuel consumption of transportation vehicles could decrease both emissions of greenhouse gases and our dependence on fossil fuels. One way to increase the fuel efficiency of internal combustion engines is to run them “lean,” in the presence of more air than needed to burn all of the fuel. It may seem strange that engines are usually designed to run with fuel and air at stoichiometric balance, or even fuel rich. However, the way emissions have been controlled with catalytic converters has required some unburned fuel in the exhaust, especially for controlling the nitrogen oxide pollutants NO and NO 2 (called NO x ). On page 1624 of this issue, Kim et al. ( 1 ) report encouraging results for catalysts that can process NO x in lean-burn engines. These perovskite oxide catalysts may help reduce or even eliminate the need for expensive and scarce platinum group metals (PGMs) in emissioncontrol catalysts.</abstract><cop>Washington</cop><pub>American Association for the Advancement of Science</pub><doi>10.1126/science.1187154</doi><tpages>2</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2010-03, Vol.327 (5973), p.1584-1585
issn 0036-8075
1095-9203
language eng
recordid cdi_osti_scitechconnect_1038081
source JSTOR Archival Journals and Primary Sources Collection; Science Online_科学在线; Alma/SFX Local Collection
subjects ADVANCED PROPULSION SYSTEMS
AIR
Automotive engineering
Carbon dioxide emissions
CATALYSTS
CATALYTIC CONVERTERS
Diesel exhaust
Diesel vehicles
EFFICIENCY
Emission control systems
Emission standards
Emissions reduction
ENGINES
FOSSIL FUELS
FUEL CONSUMPTION
Fuels
GREENHOUSE GASES
INTERNAL COMBUSTION ENGINES
NITROGEN OXIDES
OXIDES
PEROVSKITE
Perspectives
PLATINUM
POLLUTANTS
title Less Costly Catalysts for Controlling Engine Emissions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T15%3A55%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Less%20Costly%20Catalysts%20for%20Controlling%20Engine%20Emissions&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Parks,%20James%20E.&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States).%20Fuels,%20Engines%20and%20Emissions%20Research%20Center%20(FEERC)&rft.date=2010-03-26&rft.volume=327&rft.issue=5973&rft.spage=1584&rft.epage=1585&rft.pages=1584-1585&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1187154&rft_dat=%3Cjstor_osti_%3E40544413%3C/jstor_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c447t-7e0d61af501504ef1be8c934fb4accac0537363fa9eddd48de04a5b61cac1bba3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=762301984&rft_id=info:pmid/&rft_jstor_id=40544413&rfr_iscdi=true