Loading…
Less Costly Catalysts for Controlling Engine Emissions
Perovskite oxide catalysts may be able to control emissions from more fuel-efficient internal combustion engines and replace expensive noble metals. Lowering the fuel consumption of transportation vehicles could decrease both emissions of greenhouse gases and our dependence on fossil fuels. One way...
Saved in:
Published in: | Science (American Association for the Advancement of Science) 2010-03, Vol.327 (5973), p.1584-1585 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c447t-7e0d61af501504ef1be8c934fb4accac0537363fa9eddd48de04a5b61cac1bba3 |
---|---|
cites | cdi_FETCH-LOGICAL-c447t-7e0d61af501504ef1be8c934fb4accac0537363fa9eddd48de04a5b61cac1bba3 |
container_end_page | 1585 |
container_issue | 5973 |
container_start_page | 1584 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 327 |
creator | Parks, James E. |
description | Perovskite oxide catalysts may be able to control emissions from more fuel-efficient internal combustion engines and replace expensive noble metals.
Lowering the fuel consumption of transportation vehicles could decrease both emissions of greenhouse gases and our dependence on fossil fuels. One way to increase the fuel efficiency of internal combustion engines is to run them “lean,” in the presence of more air than needed to burn all of the fuel. It may seem strange that engines are usually designed to run with fuel and air at stoichiometric balance, or even fuel rich. However, the way emissions have been controlled with catalytic converters has required some unburned fuel in the exhaust, especially for controlling the nitrogen oxide pollutants NO and NO
2
(called NO
x
). On page 1624 of this issue, Kim
et al.
(
1
) report encouraging results for catalysts that can process NO
x
in lean-burn engines. These perovskite oxide catalysts may help reduce or even eliminate the need for expensive and scarce platinum group metals (PGMs) in emissioncontrol catalysts. |
doi_str_mv | 10.1126/science.1187154 |
format | article |
fullrecord | <record><control><sourceid>jstor_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1038081</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40544413</jstor_id><sourcerecordid>40544413</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-7e0d61af501504ef1be8c934fb4accac0537363fa9eddd48de04a5b61cac1bba3</originalsourceid><addsrcrecordid>eNqFkT1PAzEMhiMEEqUwMyGdWJiOOs3X3YhO5UOqxAJzlMvlylXXpMTp0H9PUKsyMlm2H9uv9RJyS-GR0rmcoR2cty4nlaKCn5EJhVqU9RzYOZkAMFlWoMQluUJcA-RezSZELh1i0QRM475oTDLjHhMWfYi56FMM4zj4VbHwq8G7YrEZEIfg8Zpc9GZEd3OMU_L5vPhoXsvl-8tb87QsLecqlcpBJ6npBVAB3PW0dZWtGe9bbqw1FgRTTLLe1K7rOl51DrgRraS5R9vWsCm5P-zNAgedX0zOftngvbNJU2AVVDRDDwdoG8P3zmHSWaZ142i8CzvUigtJKcun_ieZqBWX9O_wiVyHXfT5V63knAGtK56h2QGyMSBG1-ttHDYm7rM0_WuKPpqij6bkibvDxBpTiCecg-CcZ4k_EL2JvA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>762301984</pqid></control><display><type>article</type><title>Less Costly Catalysts for Controlling Engine Emissions</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Science Online_科学在线</source><source>Alma/SFX Local Collection</source><creator>Parks, James E.</creator><creatorcontrib>Parks, James E. ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Fuels, Engines and Emissions Research Center (FEERC)</creatorcontrib><description>Perovskite oxide catalysts may be able to control emissions from more fuel-efficient internal combustion engines and replace expensive noble metals.
Lowering the fuel consumption of transportation vehicles could decrease both emissions of greenhouse gases and our dependence on fossil fuels. One way to increase the fuel efficiency of internal combustion engines is to run them “lean,” in the presence of more air than needed to burn all of the fuel. It may seem strange that engines are usually designed to run with fuel and air at stoichiometric balance, or even fuel rich. However, the way emissions have been controlled with catalytic converters has required some unburned fuel in the exhaust, especially for controlling the nitrogen oxide pollutants NO and NO
2
(called NO
x
). On page 1624 of this issue, Kim
et al.
(
1
) report encouraging results for catalysts that can process NO
x
in lean-burn engines. These perovskite oxide catalysts may help reduce or even eliminate the need for expensive and scarce platinum group metals (PGMs) in emissioncontrol catalysts.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1187154</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington: American Association for the Advancement of Science</publisher><subject>ADVANCED PROPULSION SYSTEMS ; AIR ; Automotive engineering ; Carbon dioxide emissions ; CATALYSTS ; CATALYTIC CONVERTERS ; Diesel exhaust ; Diesel vehicles ; EFFICIENCY ; Emission control systems ; Emission standards ; Emissions reduction ; ENGINES ; FOSSIL FUELS ; FUEL CONSUMPTION ; Fuels ; GREENHOUSE GASES ; INTERNAL COMBUSTION ENGINES ; NITROGEN OXIDES ; OXIDES ; PEROVSKITE ; Perspectives ; PLATINUM ; POLLUTANTS</subject><ispartof>Science (American Association for the Advancement of Science), 2010-03, Vol.327 (5973), p.1584-1585</ispartof><rights>Copyright 2010 American Association for the Advancement of Science</rights><rights>Copyright © 2010, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-7e0d61af501504ef1be8c934fb4accac0537363fa9eddd48de04a5b61cac1bba3</citedby><cites>FETCH-LOGICAL-c447t-7e0d61af501504ef1be8c934fb4accac0537363fa9eddd48de04a5b61cac1bba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40544413$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40544413$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,777,781,882,2871,2872,27905,27906,58219,58452</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1038081$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Parks, James E.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Fuels, Engines and Emissions Research Center (FEERC)</creatorcontrib><title>Less Costly Catalysts for Controlling Engine Emissions</title><title>Science (American Association for the Advancement of Science)</title><description>Perovskite oxide catalysts may be able to control emissions from more fuel-efficient internal combustion engines and replace expensive noble metals.
Lowering the fuel consumption of transportation vehicles could decrease both emissions of greenhouse gases and our dependence on fossil fuels. One way to increase the fuel efficiency of internal combustion engines is to run them “lean,” in the presence of more air than needed to burn all of the fuel. It may seem strange that engines are usually designed to run with fuel and air at stoichiometric balance, or even fuel rich. However, the way emissions have been controlled with catalytic converters has required some unburned fuel in the exhaust, especially for controlling the nitrogen oxide pollutants NO and NO
2
(called NO
x
). On page 1624 of this issue, Kim
et al.
(
1
) report encouraging results for catalysts that can process NO
x
in lean-burn engines. These perovskite oxide catalysts may help reduce or even eliminate the need for expensive and scarce platinum group metals (PGMs) in emissioncontrol catalysts.</description><subject>ADVANCED PROPULSION SYSTEMS</subject><subject>AIR</subject><subject>Automotive engineering</subject><subject>Carbon dioxide emissions</subject><subject>CATALYSTS</subject><subject>CATALYTIC CONVERTERS</subject><subject>Diesel exhaust</subject><subject>Diesel vehicles</subject><subject>EFFICIENCY</subject><subject>Emission control systems</subject><subject>Emission standards</subject><subject>Emissions reduction</subject><subject>ENGINES</subject><subject>FOSSIL FUELS</subject><subject>FUEL CONSUMPTION</subject><subject>Fuels</subject><subject>GREENHOUSE GASES</subject><subject>INTERNAL COMBUSTION ENGINES</subject><subject>NITROGEN OXIDES</subject><subject>OXIDES</subject><subject>PEROVSKITE</subject><subject>Perspectives</subject><subject>PLATINUM</subject><subject>POLLUTANTS</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkT1PAzEMhiMEEqUwMyGdWJiOOs3X3YhO5UOqxAJzlMvlylXXpMTp0H9PUKsyMlm2H9uv9RJyS-GR0rmcoR2cty4nlaKCn5EJhVqU9RzYOZkAMFlWoMQluUJcA-RezSZELh1i0QRM475oTDLjHhMWfYi56FMM4zj4VbHwq8G7YrEZEIfg8Zpc9GZEd3OMU_L5vPhoXsvl-8tb87QsLecqlcpBJ6npBVAB3PW0dZWtGe9bbqw1FgRTTLLe1K7rOl51DrgRraS5R9vWsCm5P-zNAgedX0zOftngvbNJU2AVVDRDDwdoG8P3zmHSWaZ142i8CzvUigtJKcun_ieZqBWX9O_wiVyHXfT5V63knAGtK56h2QGyMSBG1-ttHDYm7rM0_WuKPpqij6bkibvDxBpTiCecg-CcZ4k_EL2JvA</recordid><startdate>20100326</startdate><enddate>20100326</enddate><creator>Parks, James E.</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7ST</scope><scope>7TV</scope><scope>7U6</scope><scope>OTOTI</scope></search><sort><creationdate>20100326</creationdate><title>Less Costly Catalysts for Controlling Engine Emissions</title><author>Parks, James E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-7e0d61af501504ef1be8c934fb4accac0537363fa9eddd48de04a5b61cac1bba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>ADVANCED PROPULSION SYSTEMS</topic><topic>AIR</topic><topic>Automotive engineering</topic><topic>Carbon dioxide emissions</topic><topic>CATALYSTS</topic><topic>CATALYTIC CONVERTERS</topic><topic>Diesel exhaust</topic><topic>Diesel vehicles</topic><topic>EFFICIENCY</topic><topic>Emission control systems</topic><topic>Emission standards</topic><topic>Emissions reduction</topic><topic>ENGINES</topic><topic>FOSSIL FUELS</topic><topic>FUEL CONSUMPTION</topic><topic>Fuels</topic><topic>GREENHOUSE GASES</topic><topic>INTERNAL COMBUSTION ENGINES</topic><topic>NITROGEN OXIDES</topic><topic>OXIDES</topic><topic>PEROVSKITE</topic><topic>Perspectives</topic><topic>PLATINUM</topic><topic>POLLUTANTS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parks, James E.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Fuels, Engines and Emissions Research Center (FEERC)</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>Pollution Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parks, James E.</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Fuels, Engines and Emissions Research Center (FEERC)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Less Costly Catalysts for Controlling Engine Emissions</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><date>2010-03-26</date><risdate>2010</risdate><volume>327</volume><issue>5973</issue><spage>1584</spage><epage>1585</epage><pages>1584-1585</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>Perovskite oxide catalysts may be able to control emissions from more fuel-efficient internal combustion engines and replace expensive noble metals.
Lowering the fuel consumption of transportation vehicles could decrease both emissions of greenhouse gases and our dependence on fossil fuels. One way to increase the fuel efficiency of internal combustion engines is to run them “lean,” in the presence of more air than needed to burn all of the fuel. It may seem strange that engines are usually designed to run with fuel and air at stoichiometric balance, or even fuel rich. However, the way emissions have been controlled with catalytic converters has required some unburned fuel in the exhaust, especially for controlling the nitrogen oxide pollutants NO and NO
2
(called NO
x
). On page 1624 of this issue, Kim
et al.
(
1
) report encouraging results for catalysts that can process NO
x
in lean-burn engines. These perovskite oxide catalysts may help reduce or even eliminate the need for expensive and scarce platinum group metals (PGMs) in emissioncontrol catalysts.</abstract><cop>Washington</cop><pub>American Association for the Advancement of Science</pub><doi>10.1126/science.1187154</doi><tpages>2</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2010-03, Vol.327 (5973), p.1584-1585 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_osti_scitechconnect_1038081 |
source | JSTOR Archival Journals and Primary Sources Collection; Science Online_科学在线; Alma/SFX Local Collection |
subjects | ADVANCED PROPULSION SYSTEMS AIR Automotive engineering Carbon dioxide emissions CATALYSTS CATALYTIC CONVERTERS Diesel exhaust Diesel vehicles EFFICIENCY Emission control systems Emission standards Emissions reduction ENGINES FOSSIL FUELS FUEL CONSUMPTION Fuels GREENHOUSE GASES INTERNAL COMBUSTION ENGINES NITROGEN OXIDES OXIDES PEROVSKITE Perspectives PLATINUM POLLUTANTS |
title | Less Costly Catalysts for Controlling Engine Emissions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T15%3A55%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Less%20Costly%20Catalysts%20for%20Controlling%20Engine%20Emissions&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Parks,%20James%20E.&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States).%20Fuels,%20Engines%20and%20Emissions%20Research%20Center%20(FEERC)&rft.date=2010-03-26&rft.volume=327&rft.issue=5973&rft.spage=1584&rft.epage=1585&rft.pages=1584-1585&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1187154&rft_dat=%3Cjstor_osti_%3E40544413%3C/jstor_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c447t-7e0d61af501504ef1be8c934fb4accac0537363fa9eddd48de04a5b61cac1bba3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=762301984&rft_id=info:pmid/&rft_jstor_id=40544413&rfr_iscdi=true |