Loading…
Synchroscan streak camera imaging at a 15-MeV photoinjector with emittance exchange
At the Fermilab A0 photoinjector facility, bunch-length measurements of the laser micropulse and the e-beam micropulse have been done in the past with a fast single-sweep module of the Hamamatsu C5680 streak camera with an intrinsic shot-to-shot trigger jitter of 10–20ps. We have upgraded the camera...
Saved in:
Published in: | Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment Accelerators, spectrometers, detectors and associated equipment, 2012-09, Vol.687, p.92-100 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | At the Fermilab A0 photoinjector facility, bunch-length measurements of the laser micropulse and the e-beam micropulse have been done in the past with a fast single-sweep module of the Hamamatsu C5680 streak camera with an intrinsic shot-to-shot trigger jitter of 10–20ps. We have upgraded the camera system with the synchroscan module tuned to 81.25MHz to provide synchronous summing capability with less than 1.5ps FWHM trigger jitter and a phase-locked delay box to provide phase stability of ∼1ps over 10s of minutes. These steps allowed us to measure both the UV laser pulse train at 263nm and the e-beam via optical transition radiation (OTR). Due to the low electron beam energies and OTR signals, we typically summed over 50 micropulses with 0.25–1nC per micropulse. The phase-locked delay box allowed us to assess chromatic temporal effects and instigated another upgrade to an all-mirror input optics barrel. In addition, we added a slow sweep horizontal deflection plug-in unit to provide dual-sweep capability for the streak camera. We report on a series of measurements made during the commissioning of these upgrades including bunch-length and phase effects using the emittance exchange beamline and simultaneous imaging of a UV drive laser component, OTR, and the 800nm diagnostics laser. |
---|---|
ISSN: | 0168-9002 1872-9576 |
DOI: | 10.1016/j.nima.2012.05.068 |