Loading…

Balance of Nanostructure and Bimetallic Interactions in Pt Model Fuel Cell Catalysts: In Situ XAS and DFT Study

We have studied the effect of nanostructuring in Pt monolayer model electrocatalysts on a Rh(111) single-crystal substrate on the adsorption strength of chemisorbed species. In situ high energy resolution fluorescence detection X-ray absorption spectroscopy at the Pt L 3 edge reveals characteristic...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Chemical Society 2012-06, Vol.134 (23), p.9664-9671
Main Authors: Friebel, Daniel, Viswanathan, Venkatasubramanian, Miller, Daniel J, Anniyev, Toyli, Ogasawara, Hirohito, Larsen, Ask H, O’Grady, Christopher P, Nørskov, Jens K, Nilsson, Anders
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We have studied the effect of nanostructuring in Pt monolayer model electrocatalysts on a Rh(111) single-crystal substrate on the adsorption strength of chemisorbed species. In situ high energy resolution fluorescence detection X-ray absorption spectroscopy at the Pt L 3 edge reveals characteristic changes of the shape and intensity of the “white-line” due to chemisorption of atomic hydrogen (Had) at low potentials and oxygen-containing species (O/OHad) at high potentials. On a uniform, two-dimensional Pt monolayer grown by Pt evaporation in ultrahigh vacuum, we observe a significant destabilization of both Had and O/OHad due to strain and ligand effects induced by the underlying Rh(111) substrate. When Pt is deposited via a wet-chemical route, by contrast, three-dimensional Pt islands are formed. In this case, strain and Rh ligand effects are balanced with higher local thickness of the Pt islands as well as higher defect density, shifting H and OH adsorption energies back toward pure Pt. Using density functional theory, we calculate O adsorption energies and corresponding local ORR activities for fcc 3-fold hollow sites with various local geometries that are present in the three-dimensional Pt islands.
ISSN:0002-7863
1520-5126
DOI:10.1021/ja3003765