Loading…
On an Enhanced PERSIANN-CCS Algorithm for Precipitation Estimation
By employing wavelet and selected features (WSF), median merging (MM), and selected curve-fitting (SCF) techniques, the Precipitation Estimation from Remotely Sensed Imagery using an Artificial Neural Networks Cloud Classification System (PERSIANN-CCS) has been improved. The PERSIANN-CCS methodology...
Saved in:
Published in: | Journal of atmospheric and oceanic technology 2012-07, Vol.29 (7), p.922-932 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c407t-fe317ab227ae5c029f8631df19afe820060c5d118a19124447ccb5c0030f17843 |
---|---|
cites | cdi_FETCH-LOGICAL-c407t-fe317ab227ae5c029f8631df19afe820060c5d118a19124447ccb5c0030f17843 |
container_end_page | 932 |
container_issue | 7 |
container_start_page | 922 |
container_title | Journal of atmospheric and oceanic technology |
container_volume | 29 |
creator | Mahrooghy, Majid Anantharaj, Valentine G. Younan, Nicolas H. Aanstoos, James Hsu, Kuo-Lin |
description | By employing wavelet and selected features (WSF), median merging (MM), and selected curve-fitting (SCF) techniques, the Precipitation Estimation from Remotely Sensed Imagery using an Artificial Neural Networks Cloud Classification System (PERSIANN-CCS) has been improved. The PERSIANN-CCS methodology includes the following four main steps: 1) segmentation of satellite cloud images into cloud patches, 2) feature extraction, 3) classification of cloud patches, and 4) derivation of the temperature–rain-rate (T–R) relationship for every cluster. The enhancements help improve step 2 by employing WSF, and step 4 by employing MM and SCF. For the study area herein, the results show that the enhanced methodology improves the equitable threat score (ETS) of the daily and hourly rainfall estimates mostly in the winter and fall. The ETS percentage improvement is about 20% for the daily (10% for hourly) estimates in the winter, 10% for the daily (8% for hourly) estimates in the fall, and at most 5% for the daily estimates in the summer at some rainfall thresholds. In the winter and fall, the area bias is improved almost at all rainfall thresholds for daily and hourly estimates. However, no significant improvement is obtained in the spring, and the area bias in the summer is also greater than that of the implemented PERSIANN-CCS algorithm. |
doi_str_mv | 10.1175/JTECH-D-11-00146.1 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1055189</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1032891668</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-fe317ab227ae5c029f8631df19afe820060c5d118a19124447ccb5c0030f17843</originalsourceid><addsrcrecordid>eNp90cFOAjEQBuDGaCKiL-BpoxcvizPtdts9IqBiCBDBc1NKV5bAFtvl4NtbwJMHT22Tr9OZ_oTcInQQBX98mw96r2k_RUwBMMs7eEZayCmkkNH8nLRAsCIFLugluQphDVExzFvkaVInuk4G9UrXxi6T6eB9NuyOx2mvN0u6m0_nq2a1TUrnk6m3ptpVjW4qF2-Eptoet9fkotSbYG9-1zb5eB7MYzujycuw1x2lJgPRpKVlKPSCUqEtN0CLUuYMlyUWurSSAuRg-BJRaiyQZlkmjFlECAxKFDJjbXJ3quvi0yqYqrFmZVxdW9MoBM5RFhE9nNDOu6-9DY3aVsHYzUbX1u1DdIzKAvNcRnr_h67d3tdxBEUlzSlIZPw_FWtBwSWKQ2_0pIx3IXhbqp2P3-O_I1KHhNQxIdWPB3VMSCH7AcxJfzo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1030958174</pqid></control><display><type>article</type><title>On an Enhanced PERSIANN-CCS Algorithm for Precipitation Estimation</title><source>Freely Accessible Science Journals - check A-Z of ejournals</source><creator>Mahrooghy, Majid ; Anantharaj, Valentine G. ; Younan, Nicolas H. ; Aanstoos, James ; Hsu, Kuo-Lin</creator><creatorcontrib>Mahrooghy, Majid ; Anantharaj, Valentine G. ; Younan, Nicolas H. ; Aanstoos, James ; Hsu, Kuo-Lin ; Center for Computational Sciences ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</creatorcontrib><description>By employing wavelet and selected features (WSF), median merging (MM), and selected curve-fitting (SCF) techniques, the Precipitation Estimation from Remotely Sensed Imagery using an Artificial Neural Networks Cloud Classification System (PERSIANN-CCS) has been improved. The PERSIANN-CCS methodology includes the following four main steps: 1) segmentation of satellite cloud images into cloud patches, 2) feature extraction, 3) classification of cloud patches, and 4) derivation of the temperature–rain-rate (T–R) relationship for every cluster. The enhancements help improve step 2 by employing WSF, and step 4 by employing MM and SCF. For the study area herein, the results show that the enhanced methodology improves the equitable threat score (ETS) of the daily and hourly rainfall estimates mostly in the winter and fall. The ETS percentage improvement is about 20% for the daily (10% for hourly) estimates in the winter, 10% for the daily (8% for hourly) estimates in the fall, and at most 5% for the daily estimates in the summer at some rainfall thresholds. In the winter and fall, the area bias is improved almost at all rainfall thresholds for daily and hourly estimates. However, no significant improvement is obtained in the spring, and the area bias in the summer is also greater than that of the implemented PERSIANN-CCS algorithm.</description><identifier>ISSN: 0739-0572</identifier><identifier>EISSN: 1520-0426</identifier><identifier>DOI: 10.1175/JTECH-D-11-00146.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Algorithms ; Approximation ; Artificial neural networks ; Atmosphere ; Bias ; Classification ; Cloud classification ; Clouds ; Curve fitting ; Daily ; Decomposition ; Estimates ; Feature extraction ; Floods ; Hourly rainfall ; Image processing ; Image segmentation ; Marine ; Methods ; Neural networks ; Precipitation ; Precipitation estimation ; Rain ; Rainfall ; Remote sensing ; Satellite imagery ; Satellites ; Sensors ; Standard deviation ; Summer ; Temperature ; Thresholds ; Time series ; Wavelet transforms ; Winter</subject><ispartof>Journal of atmospheric and oceanic technology, 2012-07, Vol.29 (7), p.922-932</ispartof><rights>Copyright American Meteorological Society Jul 2012</rights><rights>Copyright American Meteorological Society 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-fe317ab227ae5c029f8631df19afe820060c5d118a19124447ccb5c0030f17843</citedby><cites>FETCH-LOGICAL-c407t-fe317ab227ae5c029f8631df19afe820060c5d118a19124447ccb5c0030f17843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1055189$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Mahrooghy, Majid</creatorcontrib><creatorcontrib>Anantharaj, Valentine G.</creatorcontrib><creatorcontrib>Younan, Nicolas H.</creatorcontrib><creatorcontrib>Aanstoos, James</creatorcontrib><creatorcontrib>Hsu, Kuo-Lin</creatorcontrib><creatorcontrib>Center for Computational Sciences</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</creatorcontrib><title>On an Enhanced PERSIANN-CCS Algorithm for Precipitation Estimation</title><title>Journal of atmospheric and oceanic technology</title><description>By employing wavelet and selected features (WSF), median merging (MM), and selected curve-fitting (SCF) techniques, the Precipitation Estimation from Remotely Sensed Imagery using an Artificial Neural Networks Cloud Classification System (PERSIANN-CCS) has been improved. The PERSIANN-CCS methodology includes the following four main steps: 1) segmentation of satellite cloud images into cloud patches, 2) feature extraction, 3) classification of cloud patches, and 4) derivation of the temperature–rain-rate (T–R) relationship for every cluster. The enhancements help improve step 2 by employing WSF, and step 4 by employing MM and SCF. For the study area herein, the results show that the enhanced methodology improves the equitable threat score (ETS) of the daily and hourly rainfall estimates mostly in the winter and fall. The ETS percentage improvement is about 20% for the daily (10% for hourly) estimates in the winter, 10% for the daily (8% for hourly) estimates in the fall, and at most 5% for the daily estimates in the summer at some rainfall thresholds. In the winter and fall, the area bias is improved almost at all rainfall thresholds for daily and hourly estimates. However, no significant improvement is obtained in the spring, and the area bias in the summer is also greater than that of the implemented PERSIANN-CCS algorithm.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Artificial neural networks</subject><subject>Atmosphere</subject><subject>Bias</subject><subject>Classification</subject><subject>Cloud classification</subject><subject>Clouds</subject><subject>Curve fitting</subject><subject>Daily</subject><subject>Decomposition</subject><subject>Estimates</subject><subject>Feature extraction</subject><subject>Floods</subject><subject>Hourly rainfall</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Marine</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Precipitation</subject><subject>Precipitation estimation</subject><subject>Rain</subject><subject>Rainfall</subject><subject>Remote sensing</subject><subject>Satellite imagery</subject><subject>Satellites</subject><subject>Sensors</subject><subject>Standard deviation</subject><subject>Summer</subject><subject>Temperature</subject><subject>Thresholds</subject><subject>Time series</subject><subject>Wavelet transforms</subject><subject>Winter</subject><issn>0739-0572</issn><issn>1520-0426</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp90cFOAjEQBuDGaCKiL-BpoxcvizPtdts9IqBiCBDBc1NKV5bAFtvl4NtbwJMHT22Tr9OZ_oTcInQQBX98mw96r2k_RUwBMMs7eEZayCmkkNH8nLRAsCIFLugluQphDVExzFvkaVInuk4G9UrXxi6T6eB9NuyOx2mvN0u6m0_nq2a1TUrnk6m3ptpVjW4qF2-Eptoet9fkotSbYG9-1zb5eB7MYzujycuw1x2lJgPRpKVlKPSCUqEtN0CLUuYMlyUWurSSAuRg-BJRaiyQZlkmjFlECAxKFDJjbXJ3quvi0yqYqrFmZVxdW9MoBM5RFhE9nNDOu6-9DY3aVsHYzUbX1u1DdIzKAvNcRnr_h67d3tdxBEUlzSlIZPw_FWtBwSWKQ2_0pIx3IXhbqp2P3-O_I1KHhNQxIdWPB3VMSCH7AcxJfzo</recordid><startdate>20120701</startdate><enddate>20120701</enddate><creator>Mahrooghy, Majid</creator><creator>Anantharaj, Valentine G.</creator><creator>Younan, Nicolas H.</creator><creator>Aanstoos, James</creator><creator>Hsu, Kuo-Lin</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope><scope>OTOTI</scope></search><sort><creationdate>20120701</creationdate><title>On an Enhanced PERSIANN-CCS Algorithm for Precipitation Estimation</title><author>Mahrooghy, Majid ; Anantharaj, Valentine G. ; Younan, Nicolas H. ; Aanstoos, James ; Hsu, Kuo-Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-fe317ab227ae5c029f8631df19afe820060c5d118a19124447ccb5c0030f17843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Artificial neural networks</topic><topic>Atmosphere</topic><topic>Bias</topic><topic>Classification</topic><topic>Cloud classification</topic><topic>Clouds</topic><topic>Curve fitting</topic><topic>Daily</topic><topic>Decomposition</topic><topic>Estimates</topic><topic>Feature extraction</topic><topic>Floods</topic><topic>Hourly rainfall</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Marine</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Precipitation</topic><topic>Precipitation estimation</topic><topic>Rain</topic><topic>Rainfall</topic><topic>Remote sensing</topic><topic>Satellite imagery</topic><topic>Satellites</topic><topic>Sensors</topic><topic>Standard deviation</topic><topic>Summer</topic><topic>Temperature</topic><topic>Thresholds</topic><topic>Time series</topic><topic>Wavelet transforms</topic><topic>Winter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mahrooghy, Majid</creatorcontrib><creatorcontrib>Anantharaj, Valentine G.</creatorcontrib><creatorcontrib>Younan, Nicolas H.</creatorcontrib><creatorcontrib>Aanstoos, James</creatorcontrib><creatorcontrib>Hsu, Kuo-Lin</creatorcontrib><creatorcontrib>Center for Computational Sciences</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>ProQuest research library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>ProQuest Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>OSTI.GOV</collection><jtitle>Journal of atmospheric and oceanic technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mahrooghy, Majid</au><au>Anantharaj, Valentine G.</au><au>Younan, Nicolas H.</au><au>Aanstoos, James</au><au>Hsu, Kuo-Lin</au><aucorp>Center for Computational Sciences</aucorp><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On an Enhanced PERSIANN-CCS Algorithm for Precipitation Estimation</atitle><jtitle>Journal of atmospheric and oceanic technology</jtitle><date>2012-07-01</date><risdate>2012</risdate><volume>29</volume><issue>7</issue><spage>922</spage><epage>932</epage><pages>922-932</pages><issn>0739-0572</issn><eissn>1520-0426</eissn><abstract>By employing wavelet and selected features (WSF), median merging (MM), and selected curve-fitting (SCF) techniques, the Precipitation Estimation from Remotely Sensed Imagery using an Artificial Neural Networks Cloud Classification System (PERSIANN-CCS) has been improved. The PERSIANN-CCS methodology includes the following four main steps: 1) segmentation of satellite cloud images into cloud patches, 2) feature extraction, 3) classification of cloud patches, and 4) derivation of the temperature–rain-rate (T–R) relationship for every cluster. The enhancements help improve step 2 by employing WSF, and step 4 by employing MM and SCF. For the study area herein, the results show that the enhanced methodology improves the equitable threat score (ETS) of the daily and hourly rainfall estimates mostly in the winter and fall. The ETS percentage improvement is about 20% for the daily (10% for hourly) estimates in the winter, 10% for the daily (8% for hourly) estimates in the fall, and at most 5% for the daily estimates in the summer at some rainfall thresholds. In the winter and fall, the area bias is improved almost at all rainfall thresholds for daily and hourly estimates. However, no significant improvement is obtained in the spring, and the area bias in the summer is also greater than that of the implemented PERSIANN-CCS algorithm.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/JTECH-D-11-00146.1</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0739-0572 |
ispartof | Journal of atmospheric and oceanic technology, 2012-07, Vol.29 (7), p.922-932 |
issn | 0739-0572 1520-0426 |
language | eng |
recordid | cdi_osti_scitechconnect_1055189 |
source | Freely Accessible Science Journals - check A-Z of ejournals |
subjects | Algorithms Approximation Artificial neural networks Atmosphere Bias Classification Cloud classification Clouds Curve fitting Daily Decomposition Estimates Feature extraction Floods Hourly rainfall Image processing Image segmentation Marine Methods Neural networks Precipitation Precipitation estimation Rain Rainfall Remote sensing Satellite imagery Satellites Sensors Standard deviation Summer Temperature Thresholds Time series Wavelet transforms Winter |
title | On an Enhanced PERSIANN-CCS Algorithm for Precipitation Estimation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T15%3A29%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20an%20Enhanced%20PERSIANN-CCS%20Algorithm%20for%20Precipitation%20Estimation&rft.jtitle=Journal%20of%20atmospheric%20and%20oceanic%20technology&rft.au=Mahrooghy,%20Majid&rft.aucorp=Center%20for%20Computational%20Sciences&rft.date=2012-07-01&rft.volume=29&rft.issue=7&rft.spage=922&rft.epage=932&rft.pages=922-932&rft.issn=0739-0572&rft.eissn=1520-0426&rft_id=info:doi/10.1175/JTECH-D-11-00146.1&rft_dat=%3Cproquest_osti_%3E1032891668%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c407t-fe317ab227ae5c029f8631df19afe820060c5d118a19124447ccb5c0030f17843%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1030958174&rft_id=info:pmid/&rfr_iscdi=true |