Loading…

On an Enhanced PERSIANN-CCS Algorithm for Precipitation Estimation

By employing wavelet and selected features (WSF), median merging (MM), and selected curve-fitting (SCF) techniques, the Precipitation Estimation from Remotely Sensed Imagery using an Artificial Neural Networks Cloud Classification System (PERSIANN-CCS) has been improved. The PERSIANN-CCS methodology...

Full description

Saved in:
Bibliographic Details
Published in:Journal of atmospheric and oceanic technology 2012-07, Vol.29 (7), p.922-932
Main Authors: Mahrooghy, Majid, Anantharaj, Valentine G., Younan, Nicolas H., Aanstoos, James, Hsu, Kuo-Lin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c407t-fe317ab227ae5c029f8631df19afe820060c5d118a19124447ccb5c0030f17843
cites cdi_FETCH-LOGICAL-c407t-fe317ab227ae5c029f8631df19afe820060c5d118a19124447ccb5c0030f17843
container_end_page 932
container_issue 7
container_start_page 922
container_title Journal of atmospheric and oceanic technology
container_volume 29
creator Mahrooghy, Majid
Anantharaj, Valentine G.
Younan, Nicolas H.
Aanstoos, James
Hsu, Kuo-Lin
description By employing wavelet and selected features (WSF), median merging (MM), and selected curve-fitting (SCF) techniques, the Precipitation Estimation from Remotely Sensed Imagery using an Artificial Neural Networks Cloud Classification System (PERSIANN-CCS) has been improved. The PERSIANN-CCS methodology includes the following four main steps: 1) segmentation of satellite cloud images into cloud patches, 2) feature extraction, 3) classification of cloud patches, and 4) derivation of the temperature–rain-rate (T–R) relationship for every cluster. The enhancements help improve step 2 by employing WSF, and step 4 by employing MM and SCF. For the study area herein, the results show that the enhanced methodology improves the equitable threat score (ETS) of the daily and hourly rainfall estimates mostly in the winter and fall. The ETS percentage improvement is about 20% for the daily (10% for hourly) estimates in the winter, 10% for the daily (8% for hourly) estimates in the fall, and at most 5% for the daily estimates in the summer at some rainfall thresholds. In the winter and fall, the area bias is improved almost at all rainfall thresholds for daily and hourly estimates. However, no significant improvement is obtained in the spring, and the area bias in the summer is also greater than that of the implemented PERSIANN-CCS algorithm.
doi_str_mv 10.1175/JTECH-D-11-00146.1
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1055189</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1032891668</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-fe317ab227ae5c029f8631df19afe820060c5d118a19124447ccb5c0030f17843</originalsourceid><addsrcrecordid>eNp90cFOAjEQBuDGaCKiL-BpoxcvizPtdts9IqBiCBDBc1NKV5bAFtvl4NtbwJMHT22Tr9OZ_oTcInQQBX98mw96r2k_RUwBMMs7eEZayCmkkNH8nLRAsCIFLugluQphDVExzFvkaVInuk4G9UrXxi6T6eB9NuyOx2mvN0u6m0_nq2a1TUrnk6m3ptpVjW4qF2-Eptoet9fkotSbYG9-1zb5eB7MYzujycuw1x2lJgPRpKVlKPSCUqEtN0CLUuYMlyUWurSSAuRg-BJRaiyQZlkmjFlECAxKFDJjbXJ3quvi0yqYqrFmZVxdW9MoBM5RFhE9nNDOu6-9DY3aVsHYzUbX1u1DdIzKAvNcRnr_h67d3tdxBEUlzSlIZPw_FWtBwSWKQ2_0pIx3IXhbqp2P3-O_I1KHhNQxIdWPB3VMSCH7AcxJfzo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1030958174</pqid></control><display><type>article</type><title>On an Enhanced PERSIANN-CCS Algorithm for Precipitation Estimation</title><source>Freely Accessible Science Journals - check A-Z of ejournals</source><creator>Mahrooghy, Majid ; Anantharaj, Valentine G. ; Younan, Nicolas H. ; Aanstoos, James ; Hsu, Kuo-Lin</creator><creatorcontrib>Mahrooghy, Majid ; Anantharaj, Valentine G. ; Younan, Nicolas H. ; Aanstoos, James ; Hsu, Kuo-Lin ; Center for Computational Sciences ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</creatorcontrib><description>By employing wavelet and selected features (WSF), median merging (MM), and selected curve-fitting (SCF) techniques, the Precipitation Estimation from Remotely Sensed Imagery using an Artificial Neural Networks Cloud Classification System (PERSIANN-CCS) has been improved. The PERSIANN-CCS methodology includes the following four main steps: 1) segmentation of satellite cloud images into cloud patches, 2) feature extraction, 3) classification of cloud patches, and 4) derivation of the temperature–rain-rate (T–R) relationship for every cluster. The enhancements help improve step 2 by employing WSF, and step 4 by employing MM and SCF. For the study area herein, the results show that the enhanced methodology improves the equitable threat score (ETS) of the daily and hourly rainfall estimates mostly in the winter and fall. The ETS percentage improvement is about 20% for the daily (10% for hourly) estimates in the winter, 10% for the daily (8% for hourly) estimates in the fall, and at most 5% for the daily estimates in the summer at some rainfall thresholds. In the winter and fall, the area bias is improved almost at all rainfall thresholds for daily and hourly estimates. However, no significant improvement is obtained in the spring, and the area bias in the summer is also greater than that of the implemented PERSIANN-CCS algorithm.</description><identifier>ISSN: 0739-0572</identifier><identifier>EISSN: 1520-0426</identifier><identifier>DOI: 10.1175/JTECH-D-11-00146.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Algorithms ; Approximation ; Artificial neural networks ; Atmosphere ; Bias ; Classification ; Cloud classification ; Clouds ; Curve fitting ; Daily ; Decomposition ; Estimates ; Feature extraction ; Floods ; Hourly rainfall ; Image processing ; Image segmentation ; Marine ; Methods ; Neural networks ; Precipitation ; Precipitation estimation ; Rain ; Rainfall ; Remote sensing ; Satellite imagery ; Satellites ; Sensors ; Standard deviation ; Summer ; Temperature ; Thresholds ; Time series ; Wavelet transforms ; Winter</subject><ispartof>Journal of atmospheric and oceanic technology, 2012-07, Vol.29 (7), p.922-932</ispartof><rights>Copyright American Meteorological Society Jul 2012</rights><rights>Copyright American Meteorological Society 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-fe317ab227ae5c029f8631df19afe820060c5d118a19124447ccb5c0030f17843</citedby><cites>FETCH-LOGICAL-c407t-fe317ab227ae5c029f8631df19afe820060c5d118a19124447ccb5c0030f17843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1055189$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Mahrooghy, Majid</creatorcontrib><creatorcontrib>Anantharaj, Valentine G.</creatorcontrib><creatorcontrib>Younan, Nicolas H.</creatorcontrib><creatorcontrib>Aanstoos, James</creatorcontrib><creatorcontrib>Hsu, Kuo-Lin</creatorcontrib><creatorcontrib>Center for Computational Sciences</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</creatorcontrib><title>On an Enhanced PERSIANN-CCS Algorithm for Precipitation Estimation</title><title>Journal of atmospheric and oceanic technology</title><description>By employing wavelet and selected features (WSF), median merging (MM), and selected curve-fitting (SCF) techniques, the Precipitation Estimation from Remotely Sensed Imagery using an Artificial Neural Networks Cloud Classification System (PERSIANN-CCS) has been improved. The PERSIANN-CCS methodology includes the following four main steps: 1) segmentation of satellite cloud images into cloud patches, 2) feature extraction, 3) classification of cloud patches, and 4) derivation of the temperature–rain-rate (T–R) relationship for every cluster. The enhancements help improve step 2 by employing WSF, and step 4 by employing MM and SCF. For the study area herein, the results show that the enhanced methodology improves the equitable threat score (ETS) of the daily and hourly rainfall estimates mostly in the winter and fall. The ETS percentage improvement is about 20% for the daily (10% for hourly) estimates in the winter, 10% for the daily (8% for hourly) estimates in the fall, and at most 5% for the daily estimates in the summer at some rainfall thresholds. In the winter and fall, the area bias is improved almost at all rainfall thresholds for daily and hourly estimates. However, no significant improvement is obtained in the spring, and the area bias in the summer is also greater than that of the implemented PERSIANN-CCS algorithm.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Artificial neural networks</subject><subject>Atmosphere</subject><subject>Bias</subject><subject>Classification</subject><subject>Cloud classification</subject><subject>Clouds</subject><subject>Curve fitting</subject><subject>Daily</subject><subject>Decomposition</subject><subject>Estimates</subject><subject>Feature extraction</subject><subject>Floods</subject><subject>Hourly rainfall</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Marine</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Precipitation</subject><subject>Precipitation estimation</subject><subject>Rain</subject><subject>Rainfall</subject><subject>Remote sensing</subject><subject>Satellite imagery</subject><subject>Satellites</subject><subject>Sensors</subject><subject>Standard deviation</subject><subject>Summer</subject><subject>Temperature</subject><subject>Thresholds</subject><subject>Time series</subject><subject>Wavelet transforms</subject><subject>Winter</subject><issn>0739-0572</issn><issn>1520-0426</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp90cFOAjEQBuDGaCKiL-BpoxcvizPtdts9IqBiCBDBc1NKV5bAFtvl4NtbwJMHT22Tr9OZ_oTcInQQBX98mw96r2k_RUwBMMs7eEZayCmkkNH8nLRAsCIFLugluQphDVExzFvkaVInuk4G9UrXxi6T6eB9NuyOx2mvN0u6m0_nq2a1TUrnk6m3ptpVjW4qF2-Eptoet9fkotSbYG9-1zb5eB7MYzujycuw1x2lJgPRpKVlKPSCUqEtN0CLUuYMlyUWurSSAuRg-BJRaiyQZlkmjFlECAxKFDJjbXJ3quvi0yqYqrFmZVxdW9MoBM5RFhE9nNDOu6-9DY3aVsHYzUbX1u1DdIzKAvNcRnr_h67d3tdxBEUlzSlIZPw_FWtBwSWKQ2_0pIx3IXhbqp2P3-O_I1KHhNQxIdWPB3VMSCH7AcxJfzo</recordid><startdate>20120701</startdate><enddate>20120701</enddate><creator>Mahrooghy, Majid</creator><creator>Anantharaj, Valentine G.</creator><creator>Younan, Nicolas H.</creator><creator>Aanstoos, James</creator><creator>Hsu, Kuo-Lin</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope><scope>OTOTI</scope></search><sort><creationdate>20120701</creationdate><title>On an Enhanced PERSIANN-CCS Algorithm for Precipitation Estimation</title><author>Mahrooghy, Majid ; Anantharaj, Valentine G. ; Younan, Nicolas H. ; Aanstoos, James ; Hsu, Kuo-Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-fe317ab227ae5c029f8631df19afe820060c5d118a19124447ccb5c0030f17843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Artificial neural networks</topic><topic>Atmosphere</topic><topic>Bias</topic><topic>Classification</topic><topic>Cloud classification</topic><topic>Clouds</topic><topic>Curve fitting</topic><topic>Daily</topic><topic>Decomposition</topic><topic>Estimates</topic><topic>Feature extraction</topic><topic>Floods</topic><topic>Hourly rainfall</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Marine</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Precipitation</topic><topic>Precipitation estimation</topic><topic>Rain</topic><topic>Rainfall</topic><topic>Remote sensing</topic><topic>Satellite imagery</topic><topic>Satellites</topic><topic>Sensors</topic><topic>Standard deviation</topic><topic>Summer</topic><topic>Temperature</topic><topic>Thresholds</topic><topic>Time series</topic><topic>Wavelet transforms</topic><topic>Winter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mahrooghy, Majid</creatorcontrib><creatorcontrib>Anantharaj, Valentine G.</creatorcontrib><creatorcontrib>Younan, Nicolas H.</creatorcontrib><creatorcontrib>Aanstoos, James</creatorcontrib><creatorcontrib>Hsu, Kuo-Lin</creatorcontrib><creatorcontrib>Center for Computational Sciences</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>ProQuest research library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>ProQuest Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>OSTI.GOV</collection><jtitle>Journal of atmospheric and oceanic technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mahrooghy, Majid</au><au>Anantharaj, Valentine G.</au><au>Younan, Nicolas H.</au><au>Aanstoos, James</au><au>Hsu, Kuo-Lin</au><aucorp>Center for Computational Sciences</aucorp><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On an Enhanced PERSIANN-CCS Algorithm for Precipitation Estimation</atitle><jtitle>Journal of atmospheric and oceanic technology</jtitle><date>2012-07-01</date><risdate>2012</risdate><volume>29</volume><issue>7</issue><spage>922</spage><epage>932</epage><pages>922-932</pages><issn>0739-0572</issn><eissn>1520-0426</eissn><abstract>By employing wavelet and selected features (WSF), median merging (MM), and selected curve-fitting (SCF) techniques, the Precipitation Estimation from Remotely Sensed Imagery using an Artificial Neural Networks Cloud Classification System (PERSIANN-CCS) has been improved. The PERSIANN-CCS methodology includes the following four main steps: 1) segmentation of satellite cloud images into cloud patches, 2) feature extraction, 3) classification of cloud patches, and 4) derivation of the temperature–rain-rate (T–R) relationship for every cluster. The enhancements help improve step 2 by employing WSF, and step 4 by employing MM and SCF. For the study area herein, the results show that the enhanced methodology improves the equitable threat score (ETS) of the daily and hourly rainfall estimates mostly in the winter and fall. The ETS percentage improvement is about 20% for the daily (10% for hourly) estimates in the winter, 10% for the daily (8% for hourly) estimates in the fall, and at most 5% for the daily estimates in the summer at some rainfall thresholds. In the winter and fall, the area bias is improved almost at all rainfall thresholds for daily and hourly estimates. However, no significant improvement is obtained in the spring, and the area bias in the summer is also greater than that of the implemented PERSIANN-CCS algorithm.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/JTECH-D-11-00146.1</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0739-0572
ispartof Journal of atmospheric and oceanic technology, 2012-07, Vol.29 (7), p.922-932
issn 0739-0572
1520-0426
language eng
recordid cdi_osti_scitechconnect_1055189
source Freely Accessible Science Journals - check A-Z of ejournals
subjects Algorithms
Approximation
Artificial neural networks
Atmosphere
Bias
Classification
Cloud classification
Clouds
Curve fitting
Daily
Decomposition
Estimates
Feature extraction
Floods
Hourly rainfall
Image processing
Image segmentation
Marine
Methods
Neural networks
Precipitation
Precipitation estimation
Rain
Rainfall
Remote sensing
Satellite imagery
Satellites
Sensors
Standard deviation
Summer
Temperature
Thresholds
Time series
Wavelet transforms
Winter
title On an Enhanced PERSIANN-CCS Algorithm for Precipitation Estimation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T15%3A29%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20an%20Enhanced%20PERSIANN-CCS%20Algorithm%20for%20Precipitation%20Estimation&rft.jtitle=Journal%20of%20atmospheric%20and%20oceanic%20technology&rft.au=Mahrooghy,%20Majid&rft.aucorp=Center%20for%20Computational%20Sciences&rft.date=2012-07-01&rft.volume=29&rft.issue=7&rft.spage=922&rft.epage=932&rft.pages=922-932&rft.issn=0739-0572&rft.eissn=1520-0426&rft_id=info:doi/10.1175/JTECH-D-11-00146.1&rft_dat=%3Cproquest_osti_%3E1032891668%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c407t-fe317ab227ae5c029f8631df19afe820060c5d118a19124447ccb5c0030f17843%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1030958174&rft_id=info:pmid/&rfr_iscdi=true